随机最大期望论文-李伟南,林畅琪,廖海宁,潘敏仪,郜艳晖

随机最大期望论文-李伟南,林畅琪,廖海宁,潘敏仪,郜艳晖

导读:本文包含了随机最大期望论文开题报告文献综述及选题提纲参考文献,主要关键词:随机效应-最大期望回归树,CART回归树,随机效应,纵向数据

随机最大期望论文文献综述

李伟南,林畅琪,廖海宁,潘敏仪,郜艳晖[1](2019)在《随机效应-最大期望回归树模型的模拟研究与评价》一文中研究指出目的介绍随机效应-最大期望回归树模型(random effect-expectation maximization regression tree,RE-EM回归树)方法原理,比较RE-EM回归树与CART回归树在具有系统结构特征的纵向数据中的估计效果。方法通过计算机生成不同参数设置的模拟数据,比较在不同随机效应及残差存在相关结构的纵向数据中两种树模型对特征空间的预测能力,并通过均方残差指标对拟合效果进行评价。结果本研究所构建的RE-EM回归树在不同参数设置下的预测性能均优于CART回归树。结论 RE-EM回归树具有较强的预测性能,能准确预测特征空间且数据拟合效果好,相对于CART回归树具有明显的优势。(本文来源于《中国卫生统计》期刊2019年05期)

李伟南[2](2019)在《随机效应-最大期望回归树模型在医学系统结构数据中的应用及模型评价》一文中研究指出目的:在医学研究中,对于存在系统结构特征的实际资料,往往采用混合线性模型进行效应估计,但是对于进一步探索患者亚组与治疗方式间复杂的(高阶)交互作用时则效率较低。而决策树模型作为数据挖掘方法中的一种预测模型,具有较强的探索性能,可以同时分析多个预测变量,并且可以自动检测预测变量之间潜在的关系,对于医学疗效评价具有重要的意义。但是对于系统结构数据,传统CART回归树模型估计效率低下,模型构建准确性较低,偏倚较大。因此提高回归树模型的拟合效果及预测性能是将其应用在医学系统结构数据的重要前提。随机效应-最大期望回归树模型(Random Effect-Expectation Maximization Regression Tree,RE-EM)基于回归树模型和混合线性模型的思想,将随机效应从系统结构数据中分离出来,从而提高回归树模型构建的准确性与预测性能。本研究旨在介绍并验证随机效应-最大期望回归树模型的原理,并通过模拟实验与传统CART回归树模型进行横向对比。同时,基于慢性乙型肝炎初治患者诊疗的真实数据进行实证分析及模拟实验,进一步评价RE-EM回归树模型在不同数据结构下的拟合效果及预测性能,为更精准的医学疗效评价和回归树模型构建提供方法学支持和模型选择,为患者诊疗和干预提供方法学建议。方法:第一部分,设置随机效应及残差协方差结构,生成叁个终端节点的回归树模型模拟数据,分别拟合RE-EM回归树模型与CART回归树模型,进而评价两种回归树模型在准确性和偏倚方面的优劣,验证RE-EM回归树模型对拟合系统结构数据的适用性。第二部分,基于临床HIS数据中的慢性乙型肝炎初治患者的抗病毒治疗信息,分别拟合一般线性模型、混合线性模型、CART回归树模型以及RE-EM回归树模型,进行抗病毒疗效评估。第叁部分,基于四种模型的慢乙肝抗病毒疗效分析结果,探索不同参数(样本量、时间点、残差相关性、底层模型)条件下,RE-EM回归树模型的拟合效果及预测性能。如设定研究对象样本量为50、100、200、500、1000,对应时间点10、20、50、100。预测性能评价分为两部分:(1)预测研究对象新观测,以研究对象前70%的观测作为训练集,分别拟合四种模型,剩余的30%作为测试集,进行模型预测性能评价;(2)预测新研究对象,以70%的研究对象作为训练集,分别拟合四种模型,剩余的30%作为测试集,进行模型预测性能评价。结果:第一部分结果显示,在模型构建的准确性和拟合偏倚上,RE-EM回归树模型的表现优于CART回归树模型。在不同数据结构下,RE-EM回归树模型均能准确构建假定的回归树模型,而CART回归树模型对于系统结构数据的拟合效果则不理想,MSE值较大,无法准确构建假定的回归树模型。第二部分结果显示,在拟合适配度和偏倚上,混合线性模型的表现优于一般线性模型。在基于一般线性模型的慢乙肝患者疗效分析中,时依性ALT水平对结局定量HBV DNA检测值的影响差异有统计学意义,而考虑了随机效应及残差协方差结构的混合线性模型则无该关系。在回归树模型的分析中,RE-EM回归树模型的MSE值最小,为0.8048,低于一般线性模型、混合线性模型及CART回归树模型。第叁部分结果显示,在模型拟合效果评价中,当线性模拟数据不含随机效应时,线性模型拟合效果优于回归树模型,而对于非线性数据,回归树模型的拟合效果则明显优于线性模型,其中RE-EM回归树模型的拟合效果与CART回归树模型相近。当模拟数据为系统结构数据时,混合线性模型与RE-EM回归树模型的拟合效果相近,优于一般线性模型和CART回归树模型。综合各种情况,RE-EM回归树模型拟合效果较好,优于CART回归树模型。在模型预测新观测的性能评价中,对于具有系统结构特征的线性模拟数据,线性模型预测新观测的性能明显优于回归树模型,其中RE-EM回归树模型的预测性能优于CART回归树模型。对于具有系统结构特征的非线性模拟数据,RE-EM回归树模型与混合线性模型预测新观测的性能最优,明显优于CART回归树模型,一般线性模型拟合效果最差。综合各种情况,RE-EM回归树模型预测新观测的性能较好,优于CART回归树模型。在模型预测新对象的性能评价中,当线性模拟数据不存在系统结构特征时,线性模型预测新对象的性能优于回归树模型,当非线性模拟数据不存在系统结构特征时,回归树模型预测新对象的性能优于线性模型,与前述情况一致。而对于系统结构数据,RE-EM回归树模型预测新对象的性能始终最优。综合各种情况,RE-EM回归树模型预测新对象的性能较好。结论:对于系统结构数据,RE-EM回归树模型能够有效地识别预测变量间潜在的联系,提高模型的拟合效果,体现了RE-EM回归模型在系统结构数据中的适用性与可行性。从回归树模型的建模过程中可以看出,与线性模型相比,树模型是由根节点到终端节点的路径组成,类似于人的决策形式,其结果直观简洁具有较强的解释性。在本研究中,通过模拟实验和慢乙肝抗病毒疗效评估,验证了RE-EM回归树模型对于医学系统结构数据分析的有效性。RE-EM回归树模型对于系统结构数据的拟合效果及预测性能均优于CART回归树模型。对于线性系统结构数据,RE-EM回归树模型预测新对象的性能接近甚至优于混合线性模型。(本文来源于《广东药科大学》期刊2019-05-20)

齐豫,刘智,倪小龙[3](2017)在《基于期望最大化的随机光信号最大似然检测算法研究》一文中研究指出由于大气中存在各种微粒分子,无线激光通信系统经过大气信道后,受到大气湍流中光强闪烁现象引起的光强起伏的影响,引起激光功率的损失,最终导致在接收端接收的激光信号的强度忽高忽低,影响信号检测的精度。为了抑制光信号的起伏带来的影响,通常需要采取性能高的检测算法,研究了基于期望最大化迭代算法的最大似然检测算法,实验证明,该算法可以有效地进行信号检测,提高了信号检测的精度;且计算复杂度比最大似然序列检测大大降低,有着较高的实用性。(本文来源于《长春理工大学学报(自然科学版)》期刊2017年02期)

薛瑞红,李扬[4](2007)在《目标函数是最大延误的数学期望的单机随机调度问题》一文中研究指出在任务的加工时间和工期是相互独立的随机变量的情况下研究单机随机排序问题,目标函数为最大延误的数学期望。通过理论分析,给出了该问题的不可中断静态优先策略,并通过实例验证。(本文来源于《科学技术与工程》期刊2007年21期)

陈白丽[5](1999)在《计算随机矩阵期望最大特征问题的自组织算法》一文中研究指出设И为一随机变量矩阵,A=E(И)为N的数学期望,{A(t)}为И的一系列观测。本文提出逐次基于И的观测而计算И的数学期望A之最大特征向量的一个自组织算法。理论分析和数值实验表明:所提出的算法可行、有效、有很 强的实用性。(本文来源于《计算机工程与设计》期刊1999年02期)

随机最大期望论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

目的:在医学研究中,对于存在系统结构特征的实际资料,往往采用混合线性模型进行效应估计,但是对于进一步探索患者亚组与治疗方式间复杂的(高阶)交互作用时则效率较低。而决策树模型作为数据挖掘方法中的一种预测模型,具有较强的探索性能,可以同时分析多个预测变量,并且可以自动检测预测变量之间潜在的关系,对于医学疗效评价具有重要的意义。但是对于系统结构数据,传统CART回归树模型估计效率低下,模型构建准确性较低,偏倚较大。因此提高回归树模型的拟合效果及预测性能是将其应用在医学系统结构数据的重要前提。随机效应-最大期望回归树模型(Random Effect-Expectation Maximization Regression Tree,RE-EM)基于回归树模型和混合线性模型的思想,将随机效应从系统结构数据中分离出来,从而提高回归树模型构建的准确性与预测性能。本研究旨在介绍并验证随机效应-最大期望回归树模型的原理,并通过模拟实验与传统CART回归树模型进行横向对比。同时,基于慢性乙型肝炎初治患者诊疗的真实数据进行实证分析及模拟实验,进一步评价RE-EM回归树模型在不同数据结构下的拟合效果及预测性能,为更精准的医学疗效评价和回归树模型构建提供方法学支持和模型选择,为患者诊疗和干预提供方法学建议。方法:第一部分,设置随机效应及残差协方差结构,生成叁个终端节点的回归树模型模拟数据,分别拟合RE-EM回归树模型与CART回归树模型,进而评价两种回归树模型在准确性和偏倚方面的优劣,验证RE-EM回归树模型对拟合系统结构数据的适用性。第二部分,基于临床HIS数据中的慢性乙型肝炎初治患者的抗病毒治疗信息,分别拟合一般线性模型、混合线性模型、CART回归树模型以及RE-EM回归树模型,进行抗病毒疗效评估。第叁部分,基于四种模型的慢乙肝抗病毒疗效分析结果,探索不同参数(样本量、时间点、残差相关性、底层模型)条件下,RE-EM回归树模型的拟合效果及预测性能。如设定研究对象样本量为50、100、200、500、1000,对应时间点10、20、50、100。预测性能评价分为两部分:(1)预测研究对象新观测,以研究对象前70%的观测作为训练集,分别拟合四种模型,剩余的30%作为测试集,进行模型预测性能评价;(2)预测新研究对象,以70%的研究对象作为训练集,分别拟合四种模型,剩余的30%作为测试集,进行模型预测性能评价。结果:第一部分结果显示,在模型构建的准确性和拟合偏倚上,RE-EM回归树模型的表现优于CART回归树模型。在不同数据结构下,RE-EM回归树模型均能准确构建假定的回归树模型,而CART回归树模型对于系统结构数据的拟合效果则不理想,MSE值较大,无法准确构建假定的回归树模型。第二部分结果显示,在拟合适配度和偏倚上,混合线性模型的表现优于一般线性模型。在基于一般线性模型的慢乙肝患者疗效分析中,时依性ALT水平对结局定量HBV DNA检测值的影响差异有统计学意义,而考虑了随机效应及残差协方差结构的混合线性模型则无该关系。在回归树模型的分析中,RE-EM回归树模型的MSE值最小,为0.8048,低于一般线性模型、混合线性模型及CART回归树模型。第叁部分结果显示,在模型拟合效果评价中,当线性模拟数据不含随机效应时,线性模型拟合效果优于回归树模型,而对于非线性数据,回归树模型的拟合效果则明显优于线性模型,其中RE-EM回归树模型的拟合效果与CART回归树模型相近。当模拟数据为系统结构数据时,混合线性模型与RE-EM回归树模型的拟合效果相近,优于一般线性模型和CART回归树模型。综合各种情况,RE-EM回归树模型拟合效果较好,优于CART回归树模型。在模型预测新观测的性能评价中,对于具有系统结构特征的线性模拟数据,线性模型预测新观测的性能明显优于回归树模型,其中RE-EM回归树模型的预测性能优于CART回归树模型。对于具有系统结构特征的非线性模拟数据,RE-EM回归树模型与混合线性模型预测新观测的性能最优,明显优于CART回归树模型,一般线性模型拟合效果最差。综合各种情况,RE-EM回归树模型预测新观测的性能较好,优于CART回归树模型。在模型预测新对象的性能评价中,当线性模拟数据不存在系统结构特征时,线性模型预测新对象的性能优于回归树模型,当非线性模拟数据不存在系统结构特征时,回归树模型预测新对象的性能优于线性模型,与前述情况一致。而对于系统结构数据,RE-EM回归树模型预测新对象的性能始终最优。综合各种情况,RE-EM回归树模型预测新对象的性能较好。结论:对于系统结构数据,RE-EM回归树模型能够有效地识别预测变量间潜在的联系,提高模型的拟合效果,体现了RE-EM回归模型在系统结构数据中的适用性与可行性。从回归树模型的建模过程中可以看出,与线性模型相比,树模型是由根节点到终端节点的路径组成,类似于人的决策形式,其结果直观简洁具有较强的解释性。在本研究中,通过模拟实验和慢乙肝抗病毒疗效评估,验证了RE-EM回归树模型对于医学系统结构数据分析的有效性。RE-EM回归树模型对于系统结构数据的拟合效果及预测性能均优于CART回归树模型。对于线性系统结构数据,RE-EM回归树模型预测新对象的性能接近甚至优于混合线性模型。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

随机最大期望论文参考文献

[1].李伟南,林畅琪,廖海宁,潘敏仪,郜艳晖.随机效应-最大期望回归树模型的模拟研究与评价[J].中国卫生统计.2019

[2].李伟南.随机效应-最大期望回归树模型在医学系统结构数据中的应用及模型评价[D].广东药科大学.2019

[3].齐豫,刘智,倪小龙.基于期望最大化的随机光信号最大似然检测算法研究[J].长春理工大学学报(自然科学版).2017

[4].薛瑞红,李扬.目标函数是最大延误的数学期望的单机随机调度问题[J].科学技术与工程.2007

[5].陈白丽.计算随机矩阵期望最大特征问题的自组织算法[J].计算机工程与设计.1999

标签:;  ;  ;  ;  

随机最大期望论文-李伟南,林畅琪,廖海宁,潘敏仪,郜艳晖
下载Doc文档

猜你喜欢