导读:本文包含了全局分类论文开题报告文献综述及选题提纲参考文献,主要关键词:视角权重,特征权重,多视角,结构风险
全局分类论文文献综述
金志超,高大启,朱昌明,王喆[1](2019)在《基于权重的多视角全局和局部结构风险最小化分类器》一文中研究指出为了克服传统的多视角分类器无法充分最小化结构风险的不足,提出了基于权重的多视角全局和局部结构风险最小化分类器。该分类器利用特征和视角的权重,使得分类器更符合数据集的分布,从而提高分类器的性能,更有利于最小化结构风险。在Mfeat、Reuters、Corel3个多视角数据集上的实验表明,通过引入某一数据集中每个样本的视角和特征权重,可以使得该分类器对数据集的分类性能更好。(本文来源于《华东理工大学学报(自然科学版)》期刊2019年05期)
吴军,邱阳,卢忠亮[2](2019)在《全局融合卷积神经网络的边缘分类的人脸性别识别》一文中研究指出人脸性别识别是人脸识别领域研究的热门课题。为了进一步提高人脸性别识别的准确率,在传统的融合模型基础上,提出一种新型全局融合卷积神经网络模型(NFDCNN)。在NFDCNN模型结构上,每两采样层之间的卷积层在卷积特征提取之前融合前一级的子采样特征,这种方法可以保留原始的特征信息同时与深层纹理融合,具有高度的还原度,缩小网络误差。NFDCNN模型分类函数在常规的Softmax上做了改进,引入了区域边缘分类函数AM-Softmax,该分类函数在归类上是以一块区域为界限来划分,挤压同类,扩大类间距离,缩小类内距离。实验是在不同的人脸数据集上采用该模型方法与其他先进方法对比,验证了提出的NFDCNN模型分类识别是有效的。(本文来源于《现代电子技术》期刊2019年18期)
杨鎏,舒祥波[3](2019)在《基于全局-局部卷积神经网络的阻生牙分类》一文中研究指出为了解决因牙齿位于口腔的局部区域,且阻生牙与正常牙之间的视觉差异性非常微小导致的观察口腔CT图片可能出现的误判的问题,提出了一种新的全局-局部卷积神经网络模型(GL-CNN)。首先从全局图像与局部区域分别学习口腔CT图像中能够带有阻生牙判别信息的特征描述,然后将这两种学习到的特征进行整合来训练一个支持向量机(SVM)分类器。为了验证GL-CNN的性能,在收集的口腔CT图像数据集上用提出的GL-CNN方法与基准方法进行阻生牙分类对比实验,实验结果表明了GL-CNN方法具有更高的分类精度。(本文来源于《计算机应用》期刊2019年S1期)
董秀[4](2019)在《基于全局-局部SVM的钢板表面缺陷分类》一文中研究指出为了提高钢板表面缺陷分类识别,提出一种新的全局和局部支持向量机分类模型。首先,通过样本提取算法将整个训练样本划分为非边界样本和边界样本。非边界样本用于训练全局支持向量机,并获得两条全局决策边界。边界样本用于寻找测试样本的K-近邻样本,通过训练K-近邻样本获得相应的局部支持向量机。若测试样本位于全局决策边界线两侧,直接给出分类结果,否则,由局部支持向量机进行分类决策。最终,新的模型结合二叉树算法实现了4种钢板表面缺陷的分类问题。实验结果显示,全局和局部支持向量机模型有令人满意的综合性能。(本文来源于《信息技术》期刊2019年06期)
郭轶斌[5](2019)在《分类资料全局最优倾向性评分区间匹配的研究与应用》一文中研究指出研究背景:随机对照试验(Randomized Controlled Trial,RCT)被认为是证据等级最高的研究设计,是研究因果效应(Causal Effect)的金标准。但RCT研究并不能解决医学研究中的所有问题。由于观察性研究(observational study)不对研究对象进行随机分组,并且相对RCT更加节省费用和时间,因此越来越受到生物医学科研人员的关注。但观察性研究的研究对象基线变量在各个分组间存在着明显差异,存在混杂偏倚,从而影响处理效应估计(estimation of treatment effects)的准确性。倾向性评分法(Propensity Score,PS)是常见的可以用来控制可观测混杂的方法,其中,倾向性评分匹配法(Propensity Score Matching,PSM)应用最为广泛。PSM的基本思想是将PS相同或相近的处理组与对照组对象进行匹配,从而使得匹配后两组对象基线协变量均衡可比,控制混杂效应对处理效应估计的偏倚。为了控制匹配质量,只有处理组与对照组对象的PS距离小于设定好的一个值(卡钳值,caliper)时,才能形成匹配,该匹配方法称为倾向性评分卡钳匹配(Propensity Score Caliper Matching,PSCM)。此时由于部分处理组对象无法再对照组中找到PS距离小于卡钳值的对象从而排除匹配,因此会损失部分的样本。样本量损失的多少与卡钳值设置的大小有关。传统的PSM使用的是PS的点估计,未考虑抽样误差,损失了部分倾向性评分的信息。因此有学者提出使用倾向性评分的置信区间(confidence Interval,CI)进行匹配,称为倾向性评分区间匹配(Propensity Score Interval Matching,PSIM)。PSIM能使匹配率得到显着提升,尤其是在样本量较小的情况下。但可能导致匹配后组间协变量均衡性变差。基于运筹学整数规划问题中的指派问题(assignment problem)基本思想所构建的全局最优匹配(global optimal matching),着眼于使所有形成配对对象的倾向性评分距离之和达到最小或倾向性评分置信区间重合度之和达到最大,从而提高匹配质量,增加组间协变量的均衡性。因此,本研究将全局最优匹配算法用于优化PSIM,构建全局最优的倾向性评分区间匹配(Global Optimal Propensity Score Interval Matching,GOPSIM)算法,在增加匹配率的同时进一步平衡组间协变量,并将该算法扩展到处理因素为无序叁分类的情形,以满足实际研究中的需要。研究目的:观察性研究中存在较强混杂效应或样本量较小的情形下,使用PSCM会损失较多样本。若不使用卡钳匹配,组间协变量的均衡性就可能较差。本研究针对这一系列问题,提出能提高匹配率、提升效应估计准确度以及增加统计效率的PSIM方法。并将能进一步优化匹配质量,提升匹配后基线均衡性的基于“指派问题”的全局最优算法应用于PSIM中。并将该匹配算法从处理因素为两分类扩展到无序叁分类的情形。通过数据模拟研究,探索最优的PSIM的卡钳重合度,以及评价全局最优倾向性评分区间匹配的估计效应的准确性和精确性,从而构建最优的匹配算法。再将优化后的匹配算法应用于第五次全国卫生服务调查(上海地区)的实例研究中。研究方法:1.匹配算法构建本研究分别针对对两分类和无序叁分类两种处理因素类别数,从优化性能(局部最优、全局最优)、匹配方法(点估计匹配、置信区间匹配)和卡钳设置情况(卡钳值、卡钳区间)等3个方面的不同水平组合进行匹配算法的构建,各构建2*2*2=8种匹配算法,共计16种。2.模拟数据集生成(1)两分类处理因素首先生成自变量,根据变量关系矩阵生成18个自变量,其中9个服从发生事件率为0.5的伯努利分布的两分类自变量X_1-X_9,以及9个服从均数为0,方差为1的正态分布连续性自变量X_1 _0-X_1 _8。使用logit函数和伯努利函数,并根据混杂效应的叁种强度生成两分类处理变量,调整常数项使接受处理的对象比例控制在30%左右。最后,根据结局变量和处理变量与协变量的相关关系,使用logit函数和伯努利函数生成两分类结局变量,调整常数项使发生结局的比例控制在20%左右。两分类处理因素的模拟研究设置了3种样本量大小(200、500和1000)、3种混杂效应大小、6种处理效应大小共3*3*6=54种情形。每个情形生成1000个数据集,共产生了54,000个模拟数据集。(2)无序叁分类处理因素自变量的生成跟处理因素为两分类一致。使用logit函数和多项分布函数,并根据混杂效应的叁种强度生成叁分类处理变量,调整常数项使叁个处理水平发生的比例控制在2:3:5左右。最后根据处理变量、协变量和结局变量的关系,logit函数和伯努利函数生成两分类的结局变量,调整常数项使结局变量发生的比例控制在20%左右。无序叁分类处理因素的模拟研究设置了2种样本量(500和1000)、3中混杂效应大小、两种处理效应大小,共2*3*2=12种情形。每种情形生成1000个数据集共12,000个模拟数据集。3.匹配算法的评价本研究根据以下7种评价指标来评价不同匹配算法的表现性能,包括:处理效应估计的绝对偏倚(absolute bias)、处理效应估计的相对偏倚(percent bias)、处理效应估计的方差(variance)、处理效应估计的均方误差(mean squared error)、处理效应估计的95%置信区间覆盖率(coverage of 95%CI)、匹配率和协变量组间标准化差异(standardized difference)。使用一般线性模型(general linear model,GLM)估计不同匹配方法7个评价指标的边际均数(marginal means),从而判断不同匹配方法的匹配性能的优劣。4.实例分析以上海区第五次国家卫生服务调查数据作为实例分析部分的资料来源。处理因素为二分类的实例为上海市郊区65岁以上独居老人与非独居老人的自评健康状况差异;处理因素为无序叁分类的实例为上海市某区参保叁种不同基本医疗保险的65岁以上老年女性居民的卫生服务利用情况比较分析。研究结果:1.模拟研究结果(1)倾向性评分区间匹配(1)处理因素为两分类两分类处理的局部最优匹配共四种,分别是两分类倾向性评分最邻近匹配(PSNNM2)、倾向性评分卡钳匹配(PSCM2)、倾向性评分最大区间重合度匹配(PSMIOM2)和倾向性评分区间匹配(PSIM2)。这4种匹配方法均能很大程度上降低处理效应的估计偏倚,并使得协变量在组间相对均衡。在未进行匹配时,处理效应估计的绝对偏倚和相对偏倚均很大。PSNNM2、最优卡钳值的PSCM2和PSMIOM2较其他方法绝对偏倚和相对偏倚均较大。其余匹配方法均能达到非常好的处理效应估计准确性。除了PSMIOM2外,其余匹配方法均能使协变量达到均衡状态。PSIM2绝对偏倚的绝对值在大多数的卡钳区间下均小于最优卡钳匹配,且有较高的匹配率。随着卡钳区间的减小,绝对偏倚也随之增加,当卡钳区间为0.60时绝对偏倚最接近0。此外,随着卡钳区间的增加,匹配率的逐渐下降。相反地,组间均衡性却增加。匹配率和协变量的组间均衡性互相矛盾,匹配率的增加会使协变量组间均衡性变差。(2)处理因素为无序叁分类无序叁分类处理的局部最优匹配共四种,分别是处理因素为无序叁分类倾向性评分最邻近匹配(PSNNM3)、倾向性评分卡钳匹配(PSCM3)、倾向性评分最大区间重合度匹配(PSMIOM3)和倾向性评分区间匹配(PSIM3)。对于不同卡钳区间的PSIM3,随着卡钳区间的增加,协变量的平均标准化差异随之降低。相应地,匹配率也会随之下降。当实际数据的叁个处理组的基线协变量差异较大时,模拟研究结果显示,卡钳区间设置为2.8时,可以更好地控制组间协变量的均衡性。反之,当基线协变量较均衡时,可以选取2.4作为卡钳区间来保证较高的匹配率,使得更多的对象可以形成匹配。(2)全局最优倾向性评分匹配(1)处理因素为两分类变量两分类的全局最优倾向性匹配共四种:两分类处理全局最优倾向性评分最邻近匹配(GOPSNNM2)、全局最优倾向性评分卡钳匹配(GOPSCM2)、全局最优倾向性评分最大区间重合度匹配(GOPSMIOM2)和全局最优倾向性评分区间匹配(GOPSIM2)。GOPSMIOM2的处理效应估计的绝对偏倚和相对偏倚均较大,但其处理效应估计的方差与其他匹配方法差不多。由于偏倚较大的原因,该匹配方法的均方误差较大、处理效应估计的95%置信区间覆盖率较低、协变量的组间均衡性较差。在各种卡钳区间重合度的GOPSIM2中,随之卡钳值的增加,处理效应估计的绝对偏倚也随之增加。匹配率和协变量平均标准化差异均随着卡钳区间重合度的增加而增加。当卡钳区间重合度为0.45时,匹配率较低,此时的平均标准化差异最小当卡钳区间重合度为0.90时,匹配率较高,此时的协变量平均标准化差异为5.02%,也远远小于10%的阈值。总的来看,所有匹配方法均能得到一个偏倚较小的处理效应估计。绝对偏倚最大的匹配方法是GOPSMIOM2,最小的是GOPSIM2-60。相对偏倚与绝对偏倚相类似。各个匹配方法的处理效应估计的方差均较小且很接近。基线协变量的平均标准化差异和匹配率呈正比关系。在没有进行卡钳区间筛选之前,协变量的平均标准化差异较大。通过卡钳区间的筛选,协变量的平均标准化差异显着下降。随着卡钳区间重合度的增加,平均标准化差异逐渐下降。匹配率也随之减小。总体来看,GOPSIM2-90的标准化差异较小,匹配率较高。(2)处理因素为无序叁分类变量在GOPSCM3和GOPSNNM3中,不同匹配方法得到的处理效应估计的绝对偏倚和相对偏倚相对接近。绝对偏倚最大的匹配方法为卡钳值0.01的GOPSCM3。绝对偏倚最小的匹配方法是卡钳值0.02的GOPSCM3。处理效应估计的方差与偏倚的大致呈反比,偏倚越小方差越大。不同匹配方法间方差的差异不大。基线协变量的平均标准化差异和匹配率呈正比,匹配率越高,平均标准化差异也越大。GOPSNNM3的匹配率100.00%,随着卡钳值从0.5减小到0.01,匹配率从99.04%下降到56.47%,平均标准化差异从18.62%下降为6.44%。除了卡钳值为0.01的GOPSCM3,其余所有匹配方法协变量平均标准化差异小于10%,可认为协变量均衡可比。在GOPSMOIM3和GOPSIM3中,绝对偏倚最大的匹配方法是GOPSMIOM3(0.096),最小的是GOPSIM3-75(0.069)。相对偏倚与绝对偏倚相类似,也是GOPSMIOM最大(5.903%),GOPSIM3-75最小(4.384%)。各个匹配方法的处理效应估计的方差均较小,基本在0.075附近。由于GOPSMIOM3的处理效应的偏倚和方差均较大,因此其处理效应估计的均方误差也最大(5.094)。7种卡钳区间的GOPSIM3的均方误差较接近。基线协变量的平均标准化差异和匹配率呈正比关系。在没有进行卡钳区间筛选之前,协变量的平均标准化差异较大(16.14%),大于了10%的推荐阈值。通过卡钳区间的筛选,协变量的平均标准化差异显着下降。总体来看,GOPSIM3的标准化差异较小,匹配率较高。2.实例研究结果(1)上海市郊区65岁以上空巢老年居民自评健康状况研究排除了协变量或处理变量存在缺失的居民,最终477名独居老人和902名非独居老人纳入倾向性评分估计的模型。PSNNM2、PSMIOM2、GOPSNNM2和GOPSMIOM2的匹配率均为100%,GOPSCM2的匹配率最低,为38.99%,PSIM2匹配率最高45.49%。协变量平均标准化差异(Standardized Difference,SD)在匹配前为23.01%,四种没有设置卡钳值和卡钳区间,因此,这四种方法的协变量平均SD比较大,均大于10%。PSCM2的平均SD最小为5.28%。使用Wilcoxon秩和检验比较独居老人和非独居老人的自评健康状况,在匹配前,独居老人和非独居老人的自评健康差异有统计学意义,P<0.0001。但在进行PSM后,8种匹配方法的结果均为独居老人和非独居老人的自评健康状况差异无统计学意义(P值均大于0.05)。区间匹配能比点估计的匹配增加一定的匹配率,例如把PSCM2的匹配率从41.51%提升到PSIM2的45.49%,把GOPSNNM2的38.99%提升到GOPSIM2的44.86%。但是,协变量的标准化差异变化不大,增加了不到2%。说明不论是否联合和全局最优匹配的算法,区间匹配能在几乎不影响协变量组间均衡性的情况下,一定程度的提升匹配率,尤其是在样本量比较小,或者两个处理组间协变量分布差异较大时,优势更加明显。(2)上海市某区老年女性居民医保类型对卫生服务利用的影响本实例研究对象纳入标准为上海市某区65岁以上老年女性居民,若其基本医疗保险参保情况缺失则排除本实例研究。通过整理数据,本实例共纳入了532名参保城镇职工基本医疗保险居民、343民城镇居民基本医疗保险参保居民以及235名新农村合作医疗系统参保居民,共1110人。PSNNM3、PSMIOM3、GOPSNNM3和GOPSMIOM3的匹配率为100%。但这四种匹配方法的协变量均衡性较差,均大于了10%,但显着地低于匹配前的27.88%。PSIM3的匹配率在其余的四种匹配方法中最高,达到了58.88%。GOPSCM3的匹配率最低,仅为42.26%。通过卡钳值或卡钳区间的控制,这四种匹配方法的协变量均衡性有了很大的提升,协变量平均SD均小于了10%。其中GOPSCM3的协变量均衡性最好,平均SD仅为6.42%。在匹配前,由于存在大量混杂偏倚,未能检验出叁组间的两周就诊率的差异。但在经过PSM后,PSNNM3、PSIM3、GOPSNNM3和GOPSMIOM3卡方检验的P值均小于0.05,认为参保叁种医保类型的居民两周就诊率差异有统计学意义。与模拟研究相类似,PSNNM3、PSMIOM3、GOPSNNM3和GOPSMIOM3四种匹配方法没有设置卡钳值或卡钳区间,匹配率为100%,但这四种方法的协变量均衡性就稍差一些。其余四种方法设置了卡钳值或卡钳区间,因此协变量均衡性有所提升。使用PSNNM3匹配有统计学意义,而设置了卡钳值后PSCM3就没有统计学意义了。这可能是由于设置了卡钳值后导致了样本量的损失,使得检验效率降低。但是,使用了区间匹配后,PSIM3的匹配率比PSCM3高出了一些,提升了部分的检验效率,因此又检验出了统计学差异。研究结论:卡钳区间为0.60的PSIM2在探索的16种卡钳区间的PSIM2中有着最优的表现。因此,通过本研究的模拟实验,推荐在进行PSM时,尤其是样本量比较小的时候,使用卡钳区间为0.60的PSIM2能得到较好的匹配。随着卡钳值的减小或卡钳区间重合度的增加,PSCM3或PSIM3的组间协变量均衡性会变的更均衡,但是匹配率会随之下降。通过权衡两者,并且结合处理效应估计的指标,本研究推荐使用卡钳区间为2.6的PSIM3进行处理效应为无序叁分类的PSM。通过实例研究,进一步验证了匹配算法有着较好的表现性能。经过8种两分类倾向性评分匹配分析,上海郊区65岁以上独居与非独居老年女性居民的自评见状况差异均无统计学意义,敏感性分析的结果也显示差异无统计学意义。使用8种无序叁分类倾向性评分匹配分析上海市某区65岁以上老年女性居民医保类型对两周就诊率是否存在差异。经过PSNNM3、PSIM3、GOPSNNM3和GOPSMIOM3后,假设检验P值小于0.05,说明参保叁种基本医疗保险的居民的两周就诊率差异有统计学意义。敏感性分析结果也得到类似的结果。(本文来源于《中国人民解放军海军军医大学》期刊2019-05-20)
李玉,甄畅,石雪,赵泉华[6](2019)在《基于熵加权K-means全局信息聚类的高光谱图像分类》一文中研究指出目的高光谱图像波段数目巨大,导致在解译及分类过程中出现"维数灾难"的现象。针对该问题,在K-means聚类算法基础上,考虑各个波段对不同聚类的重要程度,同时顾及类间信息,提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法。方法首先,引入波段权重,用来刻画各个波段对不同聚类的重要程度,并定义熵信息测度表达该权重。其次,为避免局部最优聚类,引入类间距离测度实现全局最优聚类。最后,将上述两类测度引入K-means聚类目标函数,通过最小化目标函数得到最优分类结果。结果为了验证提出的高光谱图像分类方法的有效性,对Salinas高光谱图像和Pavia University高光谱图像标准图中的地物类别根据其光谱反射率差异程度进行合并,将合并后的标准图作为新的标准分类图。分别采用本文算法和传统K-means算法对Salinas高光谱图像和Pavia University高光谱图像进行实验,并定性、定量地评价和分析了实验结果。对于图像中合并后的地物类别,光谱反射率差异程度大,从视觉上看,本文算法较传统K-means算法有更好的分类结果;从分类精度看,本文算法的总精度分别为92. 20%和82. 96%,K-means算法的总精度分别为83. 39%和67. 06%,较K-means算法增长8. 81%和15. 9%。结论提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法,实验结果表明,本文算法对高光谱图像中具有不同光谱反射率差异程度的各类地物目标均能取得很好的分类结果。(本文来源于《中国图象图形学报》期刊2019年04期)
杨飞,罗建桥,李柏林[7](2019)在《结合全局和局部约束的sLDA铁路扣件分类模型》一文中研究指出针对监督潜在狄利克雷分布(sLDA)模型中测试图像缺乏标注,导致测试主题分布忽略目标结构的问题,提出一种结合全局和局部约束的sLDA(glc-sLDA)扣件图像分类模型。首先,人工标注训练图像,并在sLDA模型中学习得到含有结构信息的训练主题分布;然后,计算测试主题分布,将测试图像的类别概率作为全局约束,将测试图像子块与训练图像子块的主题相似程度作为局部约束;最后,以全局和局部约束的乘积为更新权值,对训练主题分布加权求和得到新的测试主题分布,并在Softmax分类器中得到测试图像的分类结果。实验结果表明,glc-sLDA模型能表达扣件结构信息,与sLDA相比,各类别的扣件图像区分性增强,分类误检率减小了55%。(本文来源于《计算机应用》期刊2019年03期)
龚希,吴亮,谢忠,陈占龙,刘袁缘[8](2019)在《融合全局和局部深度特征的高分辨率遥感影像场景分类方法》一文中研究指出提出了一种融合全局和局部深度特征(GLDFB)的视觉词袋模型。通过视觉词袋模型将深度卷积神经网络提取的多个层次的高层特征进行重组编码并融合,利用支持向量机对融合特征进行分类。充分利用包含场景局部细节信息的卷积层特征和包含场景全局信息的全连接层特征,完成对遥感影像场景的高效表达。通过对两个不同规模的遥感图像场景数据集的实验研究表明,相比现有方法,所提方法在高层特征表达能力和分类精度方面具有显着优势。(本文来源于《光学学报》期刊2019年03期)
邱杰,任廷会[9](2018)在《靶向整治 清除政治生态“污染源”》一文中研究指出“下基层调研,干部群众有的说,‘村霸’一除,村里连空气都是清爽的;有的说,到处都是‘眼睛’盯着,谁还敢胡作非为?”贵州省纪委有关负责人近日对说,省纪委对政治生态建设情况进行集中“会诊”、综合研判,全省各级纪检监察机关狠抓问题整改、作风整治、腐败治理,(本文来源于《中国纪检监察报》期刊2018-09-27)
李雅倩,吴超,李海滨,刘彬[10](2018)在《局部位置特征与全局轮廓特征相结合的图像分类方法》一文中研究指出在空间金字塔词袋模型的基础上,针对其空间信息利用不足的问题,本文先计算图像中每一个字典向量的相对位置分布来提取出局部位置特征.然后,用非下采样轮廓波变换和线性判别分析来生成图像的全局轮廓特征.最后,通过局部位置特征与全局轮廓特征相结合的方式提高空间信息利用率,从而提高场景和物体图像分类正确率.为了检验方法的可行性,本文分别在数据库Caltech 101、MSRC和15 Scene上进行实验.实验结果证明,本文提出的方法进一步利用了空间信息,从而提高了分类正确率.(本文来源于《电子学报》期刊2018年07期)
全局分类论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
人脸性别识别是人脸识别领域研究的热门课题。为了进一步提高人脸性别识别的准确率,在传统的融合模型基础上,提出一种新型全局融合卷积神经网络模型(NFDCNN)。在NFDCNN模型结构上,每两采样层之间的卷积层在卷积特征提取之前融合前一级的子采样特征,这种方法可以保留原始的特征信息同时与深层纹理融合,具有高度的还原度,缩小网络误差。NFDCNN模型分类函数在常规的Softmax上做了改进,引入了区域边缘分类函数AM-Softmax,该分类函数在归类上是以一块区域为界限来划分,挤压同类,扩大类间距离,缩小类内距离。实验是在不同的人脸数据集上采用该模型方法与其他先进方法对比,验证了提出的NFDCNN模型分类识别是有效的。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
全局分类论文参考文献
[1].金志超,高大启,朱昌明,王喆.基于权重的多视角全局和局部结构风险最小化分类器[J].华东理工大学学报(自然科学版).2019
[2].吴军,邱阳,卢忠亮.全局融合卷积神经网络的边缘分类的人脸性别识别[J].现代电子技术.2019
[3].杨鎏,舒祥波.基于全局-局部卷积神经网络的阻生牙分类[J].计算机应用.2019
[4].董秀.基于全局-局部SVM的钢板表面缺陷分类[J].信息技术.2019
[5].郭轶斌.分类资料全局最优倾向性评分区间匹配的研究与应用[D].中国人民解放军海军军医大学.2019
[6].李玉,甄畅,石雪,赵泉华.基于熵加权K-means全局信息聚类的高光谱图像分类[J].中国图象图形学报.2019
[7].杨飞,罗建桥,李柏林.结合全局和局部约束的sLDA铁路扣件分类模型[J].计算机应用.2019
[8].龚希,吴亮,谢忠,陈占龙,刘袁缘.融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J].光学学报.2019
[9].邱杰,任廷会.靶向整治清除政治生态“污染源”[N].中国纪检监察报.2018
[10].李雅倩,吴超,李海滨,刘彬.局部位置特征与全局轮廓特征相结合的图像分类方法[J].电子学报.2018