本文主要研究内容
作者(2019)在《Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils》一文中研究指出:The application of straw and biochar is widely practiced for the improvement of soil fertility. However, its impact on microbial functional profiles, particularly with regard to paddy soils, is not well understood. The aim of this study was to investigate the diversity of microbial carbon use patterns in paddy soils amended with straw or straw-derived biochar in a 3-year field experiment in fallow soil and at various development stages of a rice crop(i.e., tillering and blooming). We applied the community level physiological profiling approach, with 15 substrates(sugars, carboxylic and amino acids, and phenolic acid). In general, straw application resulted in the greatest microbial functional diversity owing to the greater number of available C sources than in control or biochar plots. Biochar amendment promoted the use of α-ketoglutaric acid, the mineralization of which was higher than that of any other substrate. Principal component analyses indicated that microbial functional diversity in the biochar-amended soil was separated from those of the straw-amended and control soils. Redundancy analyses revealed that soil organic carbon content was the most important factor regulating the pattern of microbial carbon utilization. Rhizodeposition and nutrient uptake by rice plants modulated microbial functions in paddy soils and stimulated the microbial use of N-rich substances, such as amino acids. Thus, our results demonstrated that the functional diversity of microorganisms in organic amended paddy soils is affected by both physicochemical properties of amendment and plant growth stage.
Abstract
The application of straw and biochar is widely practiced for the improvement of soil fertility. However, its impact on microbial functional profiles, particularly with regard to paddy soils, is not well understood. The aim of this study was to investigate the diversity of microbial carbon use patterns in paddy soils amended with straw or straw-derived biochar in a 3-year field experiment in fallow soil and at various development stages of a rice crop(i.e., tillering and blooming). We applied the community level physiological profiling approach, with 15 substrates(sugars, carboxylic and amino acids, and phenolic acid). In general, straw application resulted in the greatest microbial functional diversity owing to the greater number of available C sources than in control or biochar plots. Biochar amendment promoted the use of α-ketoglutaric acid, the mineralization of which was higher than that of any other substrate. Principal component analyses indicated that microbial functional diversity in the biochar-amended soil was separated from those of the straw-amended and control soils. Redundancy analyses revealed that soil organic carbon content was the most important factor regulating the pattern of microbial carbon utilization. Rhizodeposition and nutrient uptake by rice plants modulated microbial functions in paddy soils and stimulated the microbial use of N-rich substances, such as amino acids. Thus, our results demonstrated that the functional diversity of microorganisms in organic amended paddy soils is affected by both physicochemical properties of amendment and plant growth stage.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Integrative Agriculture的,发表于刊物Journal of Integrative Agriculture2019年07期论文,是一篇关于,Journal of Integrative Agriculture2019年07期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Integrative Agriculture2019年07期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。