本文主要研究内容
作者郭晓潞(2019)在《Effects of Cr3+, Cu2+, and Pb2+ on Fly Ash based Geopolymer》一文中研究指出:The effects of Cr3+, Cu2+, and Pb2+ on compressive strength, reaction products, and pore structures of fly ash based geopolymer were studied. In addition, the immobilization and bonding interaction between heavy metal and fly ash based geopolymers were investigated by X-ray photoelectron spectroscopic(XPS) and environmental scanning electron microscope(ESEM) techniques. The experimental results showed that the incorporation of Cr3+, Cu2+, and Pb2+ had a great effect on the later compressive strength and resulted in producing reinhardbraunsite in the solidified body. Moreover, the Pb2+ reduced the total pore volume of the solidified body, while Cr3+ and Cu2+ increased it. The XPS results indicated that O(1 s), Si(2 p), and Al(2 p)bind energy increased due to Cr3+ and Cu2+ addition, but it did not change significantly due to Pb2+ addition.The microstructure of calcium silicate hydrate(C-S-H) gel and sodium silicoaluminate hydrate(N-A-S-H) gel changed in different degree according to the ESEM results. The immobilization of Cr3+, Cu2+, and Pb2+ using fly ash based geopolymer is attributed not only to the physical encapsulation, but also to the chemical bonding interaction.
Abstract
The effects of Cr3+, Cu2+, and Pb2+ on compressive strength, reaction products, and pore structures of fly ash based geopolymer were studied. In addition, the immobilization and bonding interaction between heavy metal and fly ash based geopolymers were investigated by X-ray photoelectron spectroscopic(XPS) and environmental scanning electron microscope(ESEM) techniques. The experimental results showed that the incorporation of Cr3+, Cu2+, and Pb2+ had a great effect on the later compressive strength and resulted in producing reinhardbraunsite in the solidified body. Moreover, the Pb2+ reduced the total pore volume of the solidified body, while Cr3+ and Cu2+ increased it. The XPS results indicated that O(1 s), Si(2 p), and Al(2 p)bind energy increased due to Cr3+ and Cu2+ addition, but it did not change significantly due to Pb2+ addition.The microstructure of calcium silicate hydrate(C-S-H) gel and sodium silicoaluminate hydrate(N-A-S-H) gel changed in different degree according to the ESEM results. The immobilization of Cr3+, Cu2+, and Pb2+ using fly ash based geopolymer is attributed not only to the physical encapsulation, but also to the chemical bonding interaction.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Wuhan University of Technology(Materials Science)的郭晓潞,发表于刊物Journal of Wuhan University of Technology(Materials Science)2019年04期论文,是一篇关于,Journal of Wuhan University of Technology(Materials Science)2019年04期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Wuhan University of Technology(Materials Science)2019年04期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。
标签:Journal of Wuhan University of Technology(Materials Science)2019年04期论文;