本文主要研究内容
作者(2019)在《Fluorination-substitution effect on all-small-molecule organic solar cells》一文中研究指出:Due to the strong crystallinity and anisotropy of small molecules, matched molecular photoelectric properties and morphologies between small molecules and non-fullerene acceptors are especially important in all-small-molecule organic solar cells(OSCs).Introducing fluorine atoms has been proved as an effective strategy to achieve a high device performance through tuning molecular energy levels, absorption and assembly properties. Herein, we designed a novel benzodithiophene-based small molecule donor BDTF-CA with deep highest occupied molecular orbital(HOMO) energy level. All-small-molecule OSCs were fabricated by combing non-fullerene acceptor IDIC with different fluorine-atom numbers. Two or four fluorine atoms were introduced to the end-capped acceptor of IDIC, which are named as IDIC-2 F and IDIC-4 F, respectively. With the increase of fluorination from IDIC to IDIC-4 F, the open circuit voltage(Voc) of the devices decreased, while hole and electron mobilities of the active layers increased by one order of magnitude. Contributed to the most balanced Voc, short-circuit current(Jsc) and fill factor(FF), the device based on BDTF-CA/IDIC-2 F achieved the highest power conversion efficiency of 9.11%.
Abstract
Due to the strong crystallinity and anisotropy of small molecules, matched molecular photoelectric properties and morphologies between small molecules and non-fullerene acceptors are especially important in all-small-molecule organic solar cells(OSCs).Introducing fluorine atoms has been proved as an effective strategy to achieve a high device performance through tuning molecular energy levels, absorption and assembly properties. Herein, we designed a novel benzodithiophene-based small molecule donor BDTF-CA with deep highest occupied molecular orbital(HOMO) energy level. All-small-molecule OSCs were fabricated by combing non-fullerene acceptor IDIC with different fluorine-atom numbers. Two or four fluorine atoms were introduced to the end-capped acceptor of IDIC, which are named as IDIC-2 F and IDIC-4 F, respectively. With the increase of fluorination from IDIC to IDIC-4 F, the open circuit voltage(Voc) of the devices decreased, while hole and electron mobilities of the active layers increased by one order of magnitude. Contributed to the most balanced Voc, short-circuit current(Jsc) and fill factor(FF), the device based on BDTF-CA/IDIC-2 F achieved the highest power conversion efficiency of 9.11%.
论文参考文献
论文详细介绍
论文作者分别是来自Science China(Chemistry)的,发表于刊物Science China(Chemistry)2019年07期论文,是一篇关于,Science China(Chemistry)2019年07期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Science China(Chemistry)2019年07期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。