郭轶斌:分类资料全局最优倾向性评分区间匹配的研究与应用论文

郭轶斌:分类资料全局最优倾向性评分区间匹配的研究与应用论文

本文主要研究内容

作者郭轶斌(2019)在《分类资料全局最优倾向性评分区间匹配的研究与应用》一文中研究指出:研究背景:随机对照试验(Randomized Controlled Trial,RCT)被认为是证据等级最高的研究设计,是研究因果效应(Causal Effect)的金标准。但RCT研究并不能解决医学研究中的所有问题。由于观察性研究(observational study)不对研究对象进行随机分组,并且相对RCT更加节省费用和时间,因此越来越受到生物医学科研人员的关注。但观察性研究的研究对象基线变量在各个分组间存在着明显差异,存在混杂偏倚,从而影响处理效应估计(estimation of treatment effects)的准确性。倾向性评分法(Propensity Score,PS)是常见的可以用来控制可观测混杂的方法,其中,倾向性评分匹配法(Propensity Score Matching,PSM)应用最为广泛。PSM的基本思想是将PS相同或相近的处理组与对照组对象进行匹配,从而使得匹配后两组对象基线协变量均衡可比,控制混杂效应对处理效应估计的偏倚。为了控制匹配质量,只有处理组与对照组对象的PS距离小于设定好的一个值(卡钳值,caliper)时,才能形成匹配,该匹配方法称为倾向性评分卡钳匹配(Propensity Score Caliper Matching,PSCM)。此时由于部分处理组对象无法再对照组中找到PS距离小于卡钳值的对象从而排除匹配,因此会损失部分的样本。样本量损失的多少与卡钳值设置的大小有关。传统的PSM使用的是PS的点估计,未考虑抽样误差,损失了部分倾向性评分的信息。因此有学者提出使用倾向性评分的置信区间(confidence Interval,CI)进行匹配,称为倾向性评分区间匹配(Propensity Score Interval Matching,PSIM)。PSIM能使匹配率得到显著提升,尤其是在样本量较小的情况下。但可能导致匹配后组间协变量均衡性变差。基于运筹学整数规划问题中的指派问题(assignment problem)基本思想所构建的全局最优匹配(global optimal matching),着眼于使所有形成配对对象的倾向性评分距离之和达到最小或倾向性评分置信区间重合度之和达到最大,从而提高匹配质量,增加组间协变量的均衡性。因此,本研究将全局最优匹配算法用于优化PSIM,构建全局最优的倾向性评分区间匹配(Global Optimal Propensity Score Interval Matching,GOPSIM)算法,在增加匹配率的同时进一步平衡组间协变量,并将该算法扩展到处理因素为无序三分类的情形,以满足实际研究中的需要。研究目的:观察性研究中存在较强混杂效应或样本量较小的情形下,使用PSCM会损失较多样本。若不使用卡钳匹配,组间协变量的均衡性就可能较差。本研究针对这一系列问题,提出能提高匹配率、提升效应估计准确度以及增加统计效率的PSIM方法。并将能进一步优化匹配质量,提升匹配后基线均衡性的基于“指派问题”的全局最优算法应用于PSIM中。并将该匹配算法从处理因素为两分类扩展到无序三分类的情形。通过数据模拟研究,探索最优的PSIM的卡钳重合度,以及评价全局最优倾向性评分区间匹配的估计效应的准确性和精确性,从而构建最优的匹配算法。再将优化后的匹配算法应用于第五次全国卫生服务调查(上海地区)的实例研究中。研究方法:1.匹配算法构建本研究分别针对对两分类和无序三分类两种处理因素类别数,从优化性能(局部最优、全局最优)、匹配方法(点估计匹配、置信区间匹配)和卡钳设置情况(卡钳值、卡钳区间)等3个方面的不同水平组合进行匹配算法的构建,各构建2*2*2=8种匹配算法,共计16种。2.模拟数据集生成(1)两分类处理因素首先生成自变量,根据变量关系矩阵生成18个自变量,其中9个服从发生事件率为0.5的伯努利分布的两分类自变量X1-X9,以及9个服从均数为0,方差为1的正态分布连续性自变量X10-X18。使用logit函数和伯努利函数,并根据混杂效应的三种强度生成两分类处理变量,调整常数项使接受处理的对象比例控制在30%左右。最后,根据结局变量和处理变量与协变量的相关关系,使用logit函数和伯努利函数生成两分类结局变量,调整常数项使发生结局的比例控制在20%左右。两分类处理因素的模拟研究设置了3种样本量大小(200、500和1000)、3种混杂效应大小、6种处理效应大小共3*3*6=54种情形。每个情形生成1000个数据集,共产生了54,000个模拟数据集。(2)无序三分类处理因素自变量的生成跟处理因素为两分类一致。使用logit函数和多项分布函数,并根据混杂效应的三种强度生成三分类处理变量,调整常数项使三个处理水平发生的比例控制在2:3:5左右。最后根据处理变量、协变量和结局变量的关系,logit函数和伯努利函数生成两分类的结局变量,调整常数项使结局变量发生的比例控制在20%左右。无序三分类处理因素的模拟研究设置了2种样本量(500和1000)、3中混杂效应大小、两种处理效应大小,共2*3*2=12种情形。每种情形生成1000个数据集共12,000个模拟数据集。3.匹配算法的评价本研究根据以下7种评价指标来评价不同匹配算法的表现性能,包括:处理效应估计的绝对偏倚(absolute bias)、处理效应估计的相对偏倚(percent bias)、处理效应估计的方差(variance)、处理效应估计的均方误差(mean squared error)、处理效应估计的95%置信区间覆盖率(coverage of 95%CI)、匹配率和协变量组间标准化差异(standardized difference)。使用一般线性模型(general linear model,GLM)估计不同匹配方法7个评价指标的边际均数(marginal means),从而判断不同匹配方法的匹配性能的优劣。4.实例分析以上海区第五次国家卫生服务调查数据作为实例分析部分的资料来源。处理因素为二分类的实例为上海市郊区65岁以上独居老人与非独居老人的自评健康状况差异;处理因素为无序三分类的实例为上海市某区参保三种不同基本医疗保险的65岁以上老年女性居民的卫生服务利用情况比较分析。研究结果:1.模拟研究结果(1)倾向性评分区间匹配(1)处理因素为两分类两分类处理的局部最优匹配共四种,分别是两分类倾向性评分最邻近匹配(PSNNM2)、倾向性评分卡钳匹配(PSCM2)、倾向性评分最大区间重合度匹配(PSMIOM2)和倾向性评分区间匹配(PSIM2)。这4种匹配方法均能很大程度上降低处理效应的估计偏倚,并使得协变量在组间相对均衡。在未进行匹配时,处理效应估计的绝对偏倚和相对偏倚均很大。PSNNM2、最优卡钳值的PSCM2和PSMIOM2较其他方法绝对偏倚和相对偏倚均较大。其余匹配方法均能达到非常好的处理效应估计准确性。除了PSMIOM2外,其余匹配方法均能使协变量达到均衡状态。PSIM2绝对偏倚的绝对值在大多数的卡钳区间下均小于最优卡钳匹配,且有较高的匹配率。随着卡钳区间的减小,绝对偏倚也随之增加,当卡钳区间为0.60时绝对偏倚最接近0。此外,随着卡钳区间的增加,匹配率的逐渐下降。相反地,组间均衡性却增加。匹配率和协变量的组间均衡性互相矛盾,匹配率的增加会使协变量组间均衡性变差。(2)处理因素为无序三分类无序三分类处理的局部最优匹配共四种,分别是处理因素为无序三分类倾向性评分最邻近匹配(PSNNM3)、倾向性评分卡钳匹配(PSCM3)、倾向性评分最大区间重合度匹配(PSMIOM3)和倾向性评分区间匹配(PSIM3)。对于不同卡钳区间的PSIM3,随着卡钳区间的增加,协变量的平均标准化差异随之降低。相应地,匹配率也会随之下降。当实际数据的三个处理组的基线协变量差异较大时,模拟研究结果显示,卡钳区间设置为2.8时,可以更好地控制组间协变量的均衡性。反之,当基线协变量较均衡时,可以选取2.4作为卡钳区间来保证较高的匹配率,使得更多的对象可以形成匹配。(2)全局最优倾向性评分匹配(1)处理因素为两分类变量两分类的全局最优倾向性匹配共四种:两分类处理全局最优倾向性评分最邻近匹配(GOPSNNM2)、全局最优倾向性评分卡钳匹配(GOPSCM2)、全局最优倾向性评分最大区间重合度匹配(GOPSMIOM2)和全局最优倾向性评分区间匹配(GOPSIM2)。GOPSMIOM2的处理效应估计的绝对偏倚和相对偏倚均较大,但其处理效应估计的方差与其他匹配方法差不多。由于偏倚较大的原因,该匹配方法的均方误差较大、处理效应估计的95%置信区间覆盖率较低、协变量的组间均衡性较差。在各种卡钳区间重合度的GOPSIM2中,随之卡钳值的增加,处理效应估计的绝对偏倚也随之增加。匹配率和协变量平均标准化差异均随着卡钳区间重合度的增加而增加。当卡钳区间重合度为0.45时,匹配率较低,此时的平均标准化差异最小当卡钳区间重合度为0.90时,匹配率较高,此时的协变量平均标准化差异为5.02%,也远远小于10%的阈值。总的来看,所有匹配方法均能得到一个偏倚较小的处理效应估计。绝对偏倚最大的匹配方法是GOPSMIOM2,最小的是GOPSIM2-60。相对偏倚与绝对偏倚相类似。各个匹配方法的处理效应估计的方差均较小且很接近。基线协变量的平均标准化差异和匹配率呈正比关系。在没有进行卡钳区间筛选之前,协变量的平均标准化差异较大。通过卡钳区间的筛选,协变量的平均标准化差异显著下降。随着卡钳区间重合度的增加,平均标准化差异逐渐下降。匹配率也随之减小。总体来看,GOPSIM2-90的标准化差异较小,匹配率较高。(2)处理因素为无序三分类变量在GOPSCM3和GOPSNNM3中,不同匹配方法得到的处理效应估计的绝对偏倚和相对偏倚相对接近。绝对偏倚最大的匹配方法为卡钳值0.01的GOPSCM3。绝对偏倚最小的匹配方法是卡钳值0.02的GOPSCM3。处理效应估计的方差与偏倚的大致呈反比,偏倚越小方差越大。不同匹配方法间方差的差异不大。基线协变量的平均标准化差异和匹配率呈正比,匹配率越高,平均标准化差异也越大。GOPSNNM3的匹配率100.00%,随着卡钳值从0.5减小到0.01,匹配率从99.04%下降到56.47%,平均标准化差异从18.62%下降为6.44%。除了卡钳值为0.01的GOPSCM3,其余所有匹配方法协变量平均标准化差异小于10%,可认为协变量均衡可比。在GOPSMOIM3和GOPSIM3中,绝对偏倚最大的匹配方法是GOPSMIOM3(0.096),最小的是GOPSIM3-75(0.069)。相对偏倚与绝对偏倚相类似,也是GOPSMIOM最大(5.903%),GOPSIM3-75最小(4.384%)。各个匹配方法的处理效应估计的方差均较小,基本在0.075附近。由于GOPSMIOM3的处理效应的偏倚和方差均较大,因此其处理效应估计的均方误差也最大(5.094)。7种卡钳区间的GOPSIM3的均方误差较接近。基线协变量的平均标准化差异和匹配率呈正比关系。在没有进行卡钳区间筛选之前,协变量的平均标准化差异较大(16.14%),大于了10%的推荐阈值。通过卡钳区间的筛选,协变量的平均标准化差异显著下降。总体来看,GOPSIM3的标准化差异较小,匹配率较高。2.实例研究结果(1)上海市郊区65岁以上空巢老年居民自评健康状况研究排除了协变量或处理变量存在缺失的居民,最终477名独居老人和902名非独居老人纳入倾向性评分估计的模型。PSNNM2、PSMIOM2、GOPSNNM2和GOPSMIOM2的匹配率均为100%,GOPSCM2的匹配率最低,为38.99%,PSIM2匹配率最高45.49%。协变量平均标准化差异(Standardized Difference,SD)在匹配前为23.01%,四种没有设置卡钳值和卡钳区间,因此,这四种方法的协变量平均SD比较大,均大于10%。PSCM2的平均SD最小为5.28%。使用Wilcoxon秩和检验比较独居老人和非独居老人的自评健康状况,在匹配前,独居老人和非独居老人的自评健康差异有统计学意义,P<0.0001。但在进行PSM后,8种匹配方法的结果均为独居老人和非独居老人的自评健康状况差异无统计学意义(P值均大于0.05)。区间匹配能比点估计的匹配增加一定的匹配率,例如把PSCM2的匹配率从41.51%提升到PSIM2的45.49%,把GOPSNNM2的38.99%提升到GOPSIM2的44.86%。但是,协变量的标准化差异变化不大,增加了不到2%。说明不论是否联合和全局最优匹配的算法,区间匹配能在几乎不影响协变量组间均衡性的情况下,一定程度的提升匹配率,尤其是在样本量比较小,或者两个处理组间协变量分布差异较大时,优势更加明显。(2)上海市某区老年女性居民医保类型对卫生服务利用的影响本实例研究对象纳入标准为上海市某区65岁以上老年女性居民,若其基本医疗保险参保情况缺失则排除本实例研究。通过整理数据,本实例共纳入了532名参保城镇职工基本医疗保险居民、343民城镇居民基本医疗保险参保居民以及235名新农村合作医疗系统参保居民,共1110人。PSNNM3、PSMIOM3、GOPSNNM3和GOPSMIOM3的匹配率为100%。但这四种匹配方法的协变量均衡性较差,均大于了10%,但显著地低于匹配前的27.88%。PSIM3的匹配率在其余的四种匹配方法中最高,达到了58.88%。GOPSCM3的匹配率最低,仅为42.26%。通过卡钳值或卡钳区间的控制,这四种匹配方法的协变量均衡性有了很大的提升,协变量平均SD均小于了10%。其中GOPSCM3的协变量均衡性最好,平均SD仅为6.42%。在匹配前,由于存在大量混杂偏倚,未能检验出三组间的两周就诊率的差异。但在经过PSM后,PSNNM3、PSIM3、GOPSNNM3和GOPSMIOM3卡方检验的P值均小于0.05,认为参保三种医保类型的居民两周就诊率差异有统计学意义。与模拟研究相类似,PSNNM3、PSMIOM3、GOPSNNM3和GOPSMIOM3四种匹配方法没有设置卡钳值或卡钳区间,匹配率为100%,但这四种方法的协变量均衡性就稍差一些。其余四种方法设置了卡钳值或卡钳区间,因此协变量均衡性有所提升。使用PSNNM3匹配有统计学意义,而设置了卡钳值后PSCM3就没有统计学意义了。这可能是由于设置了卡钳值后导致了样本量的损失,使得检验效率降低。但是,使用了区间匹配后,PSIM3的匹配率比PSCM3高出了一些,提升了部分的检验效率,因此又检验出了统计学差异。研究结论:卡钳区间为0.60的PSIM2在探索的16种卡钳区间的PSIM2中有着最优的表现。因此,通过本研究的模拟实验,推荐在进行PSM时,尤其是样本量比较小的时候,使用卡钳区间为0.60的PSIM2能得到较好的匹配。随着卡钳值的减小或卡钳区间重合度的增加,PSCM3或PSIM3的组间协变量均衡性会变的更均衡,但是匹配率会随之下降。通过权衡两者,并且结合处理效应估计的指标,本研究推荐使用卡钳区间为2.6的PSIM3进行处理效应为无序三分类的PSM。通过实例研究,进一步验证了匹配算法有着较好的表现性能。经过8种两分类倾向性评分匹配分析,上海郊区65岁以上独居与非独居老年女性居民的自评见状况差异均无统计学意义,敏感性分析的结果也显示差异无统计学意义。使用8种无序三分类倾向性评分匹配分析上海市某区65岁以上老年女性居民医保类型对两周就诊率是否存在差异。经过PSNNM3、PSIM3、GOPSNNM3和GOPSMIOM3后,假设检验P值小于0.05,说明参保三种基本医疗保险的居民的两周就诊率差异有统计学意义。敏感性分析结果也得到类似的结果。

Abstract

yan jiu bei jing :sui ji dui zhao shi yan (Randomized Controlled Trial,RCT)bei ren wei shi zheng ju deng ji zui gao de yan jiu she ji ,shi yan jiu yin guo xiao ying (Causal Effect)de jin biao zhun 。dan RCTyan jiu bing bu neng jie jue yi xue yan jiu zhong de suo you wen ti 。you yu guan cha xing yan jiu (observational study)bu dui yan jiu dui xiang jin hang sui ji fen zu ,bing ju xiang dui RCTgeng jia jie sheng fei yong he shi jian ,yin ci yue lai yue shou dao sheng wu yi xue ke yan ren yuan de guan zhu 。dan guan cha xing yan jiu de yan jiu dui xiang ji xian bian liang zai ge ge fen zu jian cun zai zhao ming xian cha yi ,cun zai hun za pian yi ,cong er ying xiang chu li xiao ying gu ji (estimation of treatment effects)de zhun que xing 。qing xiang xing ping fen fa (Propensity Score,PS)shi chang jian de ke yi yong lai kong zhi ke guan ce hun za de fang fa ,ji zhong ,qing xiang xing ping fen pi pei fa (Propensity Score Matching,PSM)ying yong zui wei an fan 。PSMde ji ben sai xiang shi jiang PSxiang tong huo xiang jin de chu li zu yu dui zhao zu dui xiang jin hang pi pei ,cong er shi de pi pei hou liang zu dui xiang ji xian xie bian liang jun heng ke bi ,kong zhi hun za xiao ying dui chu li xiao ying gu ji de pian yi 。wei le kong zhi pi pei zhi liang ,zhi you chu li zu yu dui zhao zu dui xiang de PSju li xiao yu she ding hao de yi ge zhi (ka qian zhi ,caliper)shi ,cai neng xing cheng pi pei ,gai pi pei fang fa chen wei qing xiang xing ping fen ka qian pi pei (Propensity Score Caliper Matching,PSCM)。ci shi you yu bu fen chu li zu dui xiang mo fa zai dui zhao zu zhong zhao dao PSju li xiao yu ka qian zhi de dui xiang cong er pai chu pi pei ,yin ci hui sun shi bu fen de yang ben 。yang ben liang sun shi de duo shao yu ka qian zhi she zhi de da xiao you guan 。chuan tong de PSMshi yong de shi PSde dian gu ji ,wei kao lv chou yang wu cha ,sun shi le bu fen qing xiang xing ping fen de xin xi 。yin ci you xue zhe di chu shi yong qing xiang xing ping fen de zhi xin ou jian (confidence Interval,CI)jin hang pi pei ,chen wei qing xiang xing ping fen ou jian pi pei (Propensity Score Interval Matching,PSIM)。PSIMneng shi pi pei lv de dao xian zhe di sheng ,you ji shi zai yang ben liang jiao xiao de qing kuang xia 。dan ke neng dao zhi pi pei hou zu jian xie bian liang jun heng xing bian cha 。ji yu yun chou xue zheng shu gui hua wen ti zhong de zhi pa wen ti (assignment problem)ji ben sai xiang suo gou jian de quan ju zui you pi pei (global optimal matching),zhao yan yu shi suo you xing cheng pei dui dui xiang de qing xiang xing ping fen ju li zhi he da dao zui xiao huo qing xiang xing ping fen zhi xin ou jian chong ge du zhi he da dao zui da ,cong er di gao pi pei zhi liang ,zeng jia zu jian xie bian liang de jun heng xing 。yin ci ,ben yan jiu jiang quan ju zui you pi pei suan fa yong yu you hua PSIM,gou jian quan ju zui you de qing xiang xing ping fen ou jian pi pei (Global Optimal Propensity Score Interval Matching,GOPSIM)suan fa ,zai zeng jia pi pei lv de tong shi jin yi bu ping heng zu jian xie bian liang ,bing jiang gai suan fa kuo zhan dao chu li yin su wei mo xu san fen lei de qing xing ,yi man zu shi ji yan jiu zhong de xu yao 。yan jiu mu de :guan cha xing yan jiu zhong cun zai jiao jiang hun za xiao ying huo yang ben liang jiao xiao de qing xing xia ,shi yong PSCMhui sun shi jiao duo yang ben 。re bu shi yong ka qian pi pei ,zu jian xie bian liang de jun heng xing jiu ke neng jiao cha 。ben yan jiu zhen dui zhe yi ji lie wen ti ,di chu neng di gao pi pei lv 、di sheng xiao ying gu ji zhun que du yi ji zeng jia tong ji xiao lv de PSIMfang fa 。bing jiang neng jin yi bu you hua pi pei zhi liang ,di sheng pi pei hou ji xian jun heng xing de ji yu “zhi pa wen ti ”de quan ju zui you suan fa ying yong yu PSIMzhong 。bing jiang gai pi pei suan fa cong chu li yin su wei liang fen lei kuo zhan dao mo xu san fen lei de qing xing 。tong guo shu ju mo ni yan jiu ,tan suo zui you de PSIMde ka qian chong ge du ,yi ji ping jia quan ju zui you qing xiang xing ping fen ou jian pi pei de gu ji xiao ying de zhun que xing he jing que xing ,cong er gou jian zui you de pi pei suan fa 。zai jiang you hua hou de pi pei suan fa ying yong yu di wu ci quan guo wei sheng fu wu diao cha (shang hai de ou )de shi li yan jiu zhong 。yan jiu fang fa :1.pi pei suan fa gou jian ben yan jiu fen bie zhen dui dui liang fen lei he mo xu san fen lei liang chong chu li yin su lei bie shu ,cong you hua xing neng (ju bu zui you 、quan ju zui you )、pi pei fang fa (dian gu ji pi pei 、zhi xin ou jian pi pei )he ka qian she zhi qing kuang (ka qian zhi 、ka qian ou jian )deng 3ge fang mian de bu tong shui ping zu ge jin hang pi pei suan fa de gou jian ,ge gou jian 2*2*2=8chong pi pei suan fa ,gong ji 16chong 。2.mo ni shu ju ji sheng cheng (1)liang fen lei chu li yin su shou xian sheng cheng zi bian liang ,gen ju bian liang guan ji ju zhen sheng cheng 18ge zi bian liang ,ji zhong 9ge fu cong fa sheng shi jian lv wei 0.5de bai nu li fen bu de liang fen lei zi bian liang X1-X9,yi ji 9ge fu cong jun shu wei 0,fang cha wei 1de zheng tai fen bu lian xu xing zi bian liang X10-X18。shi yong logithan shu he bai nu li han shu ,bing gen ju hun za xiao ying de san chong jiang du sheng cheng liang fen lei chu li bian liang ,diao zheng chang shu xiang shi jie shou chu li de dui xiang bi li kong zhi zai 30%zuo you 。zui hou ,gen ju jie ju bian liang he chu li bian liang yu xie bian liang de xiang guan guan ji ,shi yong logithan shu he bai nu li han shu sheng cheng liang fen lei jie ju bian liang ,diao zheng chang shu xiang shi fa sheng jie ju de bi li kong zhi zai 20%zuo you 。liang fen lei chu li yin su de mo ni yan jiu she zhi le 3chong yang ben liang da xiao (200、500he 1000)、3chong hun za xiao ying da xiao 、6chong chu li xiao ying da xiao gong 3*3*6=54chong qing xing 。mei ge qing xing sheng cheng 1000ge shu ju ji ,gong chan sheng le 54,000ge mo ni shu ju ji 。(2)mo xu san fen lei chu li yin su zi bian liang de sheng cheng gen chu li yin su wei liang fen lei yi zhi 。shi yong logithan shu he duo xiang fen bu han shu ,bing gen ju hun za xiao ying de san chong jiang du sheng cheng san fen lei chu li bian liang ,diao zheng chang shu xiang shi san ge chu li shui ping fa sheng de bi li kong zhi zai 2:3:5zuo you 。zui hou gen ju chu li bian liang 、xie bian liang he jie ju bian liang de guan ji ,logithan shu he bai nu li han shu sheng cheng liang fen lei de jie ju bian liang ,diao zheng chang shu xiang shi jie ju bian liang fa sheng de bi li kong zhi zai 20%zuo you 。mo xu san fen lei chu li yin su de mo ni yan jiu she zhi le 2chong yang ben liang (500he 1000)、3zhong hun za xiao ying da xiao 、liang chong chu li xiao ying da xiao ,gong 2*3*2=12chong qing xing 。mei chong qing xing sheng cheng 1000ge shu ju ji gong 12,000ge mo ni shu ju ji 。3.pi pei suan fa de ping jia ben yan jiu gen ju yi xia 7chong ping jia zhi biao lai ping jia bu tong pi pei suan fa de biao xian xing neng ,bao gua :chu li xiao ying gu ji de jue dui pian yi (absolute bias)、chu li xiao ying gu ji de xiang dui pian yi (percent bias)、chu li xiao ying gu ji de fang cha (variance)、chu li xiao ying gu ji de jun fang wu cha (mean squared error)、chu li xiao ying gu ji de 95%zhi xin ou jian fu gai lv (coverage of 95%CI)、pi pei lv he xie bian liang zu jian biao zhun hua cha yi (standardized difference)。shi yong yi ban xian xing mo xing (general linear model,GLM)gu ji bu tong pi pei fang fa 7ge ping jia zhi biao de bian ji jun shu (marginal means),cong er pan duan bu tong pi pei fang fa de pi pei xing neng de you lie 。4.shi li fen xi yi shang hai ou di wu ci guo jia wei sheng fu wu diao cha shu ju zuo wei shi li fen xi bu fen de zi liao lai yuan 。chu li yin su wei er fen lei de shi li wei shang hai shi jiao ou 65sui yi shang du ju lao ren yu fei du ju lao ren de zi ping jian kang zhuang kuang cha yi ;chu li yin su wei mo xu san fen lei de shi li wei shang hai shi mou ou can bao san chong bu tong ji ben yi liao bao xian de 65sui yi shang lao nian nv xing ju min de wei sheng fu wu li yong qing kuang bi jiao fen xi 。yan jiu jie guo :1.mo ni yan jiu jie guo (1)qing xiang xing ping fen ou jian pi pei (1)chu li yin su wei liang fen lei liang fen lei chu li de ju bu zui you pi pei gong si chong ,fen bie shi liang fen lei qing xiang xing ping fen zui lin jin pi pei (PSNNM2)、qing xiang xing ping fen ka qian pi pei (PSCM2)、qing xiang xing ping fen zui da ou jian chong ge du pi pei (PSMIOM2)he qing xiang xing ping fen ou jian pi pei (PSIM2)。zhe 4chong pi pei fang fa jun neng hen da cheng du shang jiang di chu li xiao ying de gu ji pian yi ,bing shi de xie bian liang zai zu jian xiang dui jun heng 。zai wei jin hang pi pei shi ,chu li xiao ying gu ji de jue dui pian yi he xiang dui pian yi jun hen da 。PSNNM2、zui you ka qian zhi de PSCM2he PSMIOM2jiao ji ta fang fa jue dui pian yi he xiang dui pian yi jun jiao da 。ji yu pi pei fang fa jun neng da dao fei chang hao de chu li xiao ying gu ji zhun que xing 。chu le PSMIOM2wai ,ji yu pi pei fang fa jun neng shi xie bian liang da dao jun heng zhuang tai 。PSIM2jue dui pian yi de jue dui zhi zai da duo shu de ka qian ou jian xia jun xiao yu zui you ka qian pi pei ,ju you jiao gao de pi pei lv 。sui zhao ka qian ou jian de jian xiao ,jue dui pian yi ye sui zhi zeng jia ,dang ka qian ou jian wei 0.60shi jue dui pian yi zui jie jin 0。ci wai ,sui zhao ka qian ou jian de zeng jia ,pi pei lv de zhu jian xia jiang 。xiang fan de ,zu jian jun heng xing que zeng jia 。pi pei lv he xie bian liang de zu jian jun heng xing hu xiang mao dun ,pi pei lv de zeng jia hui shi xie bian liang zu jian jun heng xing bian cha 。(2)chu li yin su wei mo xu san fen lei mo xu san fen lei chu li de ju bu zui you pi pei gong si chong ,fen bie shi chu li yin su wei mo xu san fen lei qing xiang xing ping fen zui lin jin pi pei (PSNNM3)、qing xiang xing ping fen ka qian pi pei (PSCM3)、qing xiang xing ping fen zui da ou jian chong ge du pi pei (PSMIOM3)he qing xiang xing ping fen ou jian pi pei (PSIM3)。dui yu bu tong ka qian ou jian de PSIM3,sui zhao ka qian ou jian de zeng jia ,xie bian liang de ping jun biao zhun hua cha yi sui zhi jiang di 。xiang ying de ,pi pei lv ye hui sui zhi xia jiang 。dang shi ji shu ju de san ge chu li zu de ji xian xie bian liang cha yi jiao da shi ,mo ni yan jiu jie guo xian shi ,ka qian ou jian she zhi wei 2.8shi ,ke yi geng hao de kong zhi zu jian xie bian liang de jun heng xing 。fan zhi ,dang ji xian xie bian liang jiao jun heng shi ,ke yi shua qu 2.4zuo wei ka qian ou jian lai bao zheng jiao gao de pi pei lv ,shi de geng duo de dui xiang ke yi xing cheng pi pei 。(2)quan ju zui you qing xiang xing ping fen pi pei (1)chu li yin su wei liang fen lei bian liang liang fen lei de quan ju zui you qing xiang xing pi pei gong si chong :liang fen lei chu li quan ju zui you qing xiang xing ping fen zui lin jin pi pei (GOPSNNM2)、quan ju zui you qing xiang xing ping fen ka qian pi pei (GOPSCM2)、quan ju zui you qing xiang xing ping fen zui da ou jian chong ge du pi pei (GOPSMIOM2)he quan ju zui you qing xiang xing ping fen ou jian pi pei (GOPSIM2)。GOPSMIOM2de chu li xiao ying gu ji de jue dui pian yi he xiang dui pian yi jun jiao da ,dan ji chu li xiao ying gu ji de fang cha yu ji ta pi pei fang fa cha bu duo 。you yu pian yi jiao da de yuan yin ,gai pi pei fang fa de jun fang wu cha jiao da 、chu li xiao ying gu ji de 95%zhi xin ou jian fu gai lv jiao di 、xie bian liang de zu jian jun heng xing jiao cha 。zai ge chong ka qian ou jian chong ge du de GOPSIM2zhong ,sui zhi ka qian zhi de zeng jia ,chu li xiao ying gu ji de jue dui pian yi ye sui zhi zeng jia 。pi pei lv he xie bian liang ping jun biao zhun hua cha yi jun sui zhao ka qian ou jian chong ge du de zeng jia er zeng jia 。dang ka qian ou jian chong ge du wei 0.45shi ,pi pei lv jiao di ,ci shi de ping jun biao zhun hua cha yi zui xiao dang ka qian ou jian chong ge du wei 0.90shi ,pi pei lv jiao gao ,ci shi de xie bian liang ping jun biao zhun hua cha yi wei 5.02%,ye yuan yuan xiao yu 10%de yu zhi 。zong de lai kan ,suo you pi pei fang fa jun neng de dao yi ge pian yi jiao xiao de chu li xiao ying gu ji 。jue dui pian yi zui da de pi pei fang fa shi GOPSMIOM2,zui xiao de shi GOPSIM2-60。xiang dui pian yi yu jue dui pian yi xiang lei shi 。ge ge pi pei fang fa de chu li xiao ying gu ji de fang cha jun jiao xiao ju hen jie jin 。ji xian xie bian liang de ping jun biao zhun hua cha yi he pi pei lv cheng zheng bi guan ji 。zai mei you jin hang ka qian ou jian shai shua zhi qian ,xie bian liang de ping jun biao zhun hua cha yi jiao da 。tong guo ka qian ou jian de shai shua ,xie bian liang de ping jun biao zhun hua cha yi xian zhe xia jiang 。sui zhao ka qian ou jian chong ge du de zeng jia ,ping jun biao zhun hua cha yi zhu jian xia jiang 。pi pei lv ye sui zhi jian xiao 。zong ti lai kan ,GOPSIM2-90de biao zhun hua cha yi jiao xiao ,pi pei lv jiao gao 。(2)chu li yin su wei mo xu san fen lei bian liang zai GOPSCM3he GOPSNNM3zhong ,bu tong pi pei fang fa de dao de chu li xiao ying gu ji de jue dui pian yi he xiang dui pian yi xiang dui jie jin 。jue dui pian yi zui da de pi pei fang fa wei ka qian zhi 0.01de GOPSCM3。jue dui pian yi zui xiao de pi pei fang fa shi ka qian zhi 0.02de GOPSCM3。chu li xiao ying gu ji de fang cha yu pian yi de da zhi cheng fan bi ,pian yi yue xiao fang cha yue da 。bu tong pi pei fang fa jian fang cha de cha yi bu da 。ji xian xie bian liang de ping jun biao zhun hua cha yi he pi pei lv cheng zheng bi ,pi pei lv yue gao ,ping jun biao zhun hua cha yi ye yue da 。GOPSNNM3de pi pei lv 100.00%,sui zhao ka qian zhi cong 0.5jian xiao dao 0.01,pi pei lv cong 99.04%xia jiang dao 56.47%,ping jun biao zhun hua cha yi cong 18.62%xia jiang wei 6.44%。chu le ka qian zhi wei 0.01de GOPSCM3,ji yu suo you pi pei fang fa xie bian liang ping jun biao zhun hua cha yi xiao yu 10%,ke ren wei xie bian liang jun heng ke bi 。zai GOPSMOIM3he GOPSIM3zhong ,jue dui pian yi zui da de pi pei fang fa shi GOPSMIOM3(0.096),zui xiao de shi GOPSIM3-75(0.069)。xiang dui pian yi yu jue dui pian yi xiang lei shi ,ye shi GOPSMIOMzui da (5.903%),GOPSIM3-75zui xiao (4.384%)。ge ge pi pei fang fa de chu li xiao ying gu ji de fang cha jun jiao xiao ,ji ben zai 0.075fu jin 。you yu GOPSMIOM3de chu li xiao ying de pian yi he fang cha jun jiao da ,yin ci ji chu li xiao ying gu ji de jun fang wu cha ye zui da (5.094)。7chong ka qian ou jian de GOPSIM3de jun fang wu cha jiao jie jin 。ji xian xie bian liang de ping jun biao zhun hua cha yi he pi pei lv cheng zheng bi guan ji 。zai mei you jin hang ka qian ou jian shai shua zhi qian ,xie bian liang de ping jun biao zhun hua cha yi jiao da (16.14%),da yu le 10%de tui jian yu zhi 。tong guo ka qian ou jian de shai shua ,xie bian liang de ping jun biao zhun hua cha yi xian zhe xia jiang 。zong ti lai kan ,GOPSIM3de biao zhun hua cha yi jiao xiao ,pi pei lv jiao gao 。2.shi li yan jiu jie guo (1)shang hai shi jiao ou 65sui yi shang kong chao lao nian ju min zi ping jian kang zhuang kuang yan jiu pai chu le xie bian liang huo chu li bian liang cun zai que shi de ju min ,zui zhong 477ming du ju lao ren he 902ming fei du ju lao ren na ru qing xiang xing ping fen gu ji de mo xing 。PSNNM2、PSMIOM2、GOPSNNM2he GOPSMIOM2de pi pei lv jun wei 100%,GOPSCM2de pi pei lv zui di ,wei 38.99%,PSIM2pi pei lv zui gao 45.49%。xie bian liang ping jun biao zhun hua cha yi (Standardized Difference,SD)zai pi pei qian wei 23.01%,si chong mei you she zhi ka qian zhi he ka qian ou jian ,yin ci ,zhe si chong fang fa de xie bian liang ping jun SDbi jiao da ,jun da yu 10%。PSCM2de ping jun SDzui xiao wei 5.28%。shi yong Wilcoxonzhi he jian yan bi jiao du ju lao ren he fei du ju lao ren de zi ping jian kang zhuang kuang ,zai pi pei qian ,du ju lao ren he fei du ju lao ren de zi ping jian kang cha yi you tong ji xue yi yi ,P<0.0001。dan zai jin hang PSMhou ,8chong pi pei fang fa de jie guo jun wei du ju lao ren he fei du ju lao ren de zi ping jian kang zhuang kuang cha yi mo tong ji xue yi yi (Pzhi jun da yu 0.05)。ou jian pi pei neng bi dian gu ji de pi pei zeng jia yi ding de pi pei lv ,li ru ba PSCM2de pi pei lv cong 41.51%di sheng dao PSIM2de 45.49%,ba GOPSNNM2de 38.99%di sheng dao GOPSIM2de 44.86%。dan shi ,xie bian liang de biao zhun hua cha yi bian hua bu da ,zeng jia le bu dao 2%。shui ming bu lun shi fou lian ge he quan ju zui you pi pei de suan fa ,ou jian pi pei neng zai ji hu bu ying xiang xie bian liang zu jian jun heng xing de qing kuang xia ,yi ding cheng du de di sheng pi pei lv ,you ji shi zai yang ben liang bi jiao xiao ,huo zhe liang ge chu li zu jian xie bian liang fen bu cha yi jiao da shi ,you shi geng jia ming xian 。(2)shang hai shi mou ou lao nian nv xing ju min yi bao lei xing dui wei sheng fu wu li yong de ying xiang ben shi li yan jiu dui xiang na ru biao zhun wei shang hai shi mou ou 65sui yi shang lao nian nv xing ju min ,re ji ji ben yi liao bao xian can bao qing kuang que shi ze pai chu ben shi li yan jiu 。tong guo zheng li shu ju ,ben shi li gong na ru le 532ming can bao cheng zhen zhi gong ji ben yi liao bao xian ju min 、343min cheng zhen ju min ji ben yi liao bao xian can bao ju min yi ji 235ming xin nong cun ge zuo yi liao ji tong can bao ju min ,gong 1110ren 。PSNNM3、PSMIOM3、GOPSNNM3he GOPSMIOM3de pi pei lv wei 100%。dan zhe si chong pi pei fang fa de xie bian liang jun heng xing jiao cha ,jun da yu le 10%,dan xian zhe de di yu pi pei qian de 27.88%。PSIM3de pi pei lv zai ji yu de si chong pi pei fang fa zhong zui gao ,da dao le 58.88%。GOPSCM3de pi pei lv zui di ,jin wei 42.26%。tong guo ka qian zhi huo ka qian ou jian de kong zhi ,zhe si chong pi pei fang fa de xie bian liang jun heng xing you le hen da de di sheng ,xie bian liang ping jun SDjun xiao yu le 10%。ji zhong GOPSCM3de xie bian liang jun heng xing zui hao ,ping jun SDjin wei 6.42%。zai pi pei qian ,you yu cun zai da liang hun za pian yi ,wei neng jian yan chu san zu jian de liang zhou jiu zhen lv de cha yi 。dan zai jing guo PSMhou ,PSNNM3、PSIM3、GOPSNNM3he GOPSMIOM3ka fang jian yan de Pzhi jun xiao yu 0.05,ren wei can bao san chong yi bao lei xing de ju min liang zhou jiu zhen lv cha yi you tong ji xue yi yi 。yu mo ni yan jiu xiang lei shi ,PSNNM3、PSMIOM3、GOPSNNM3he GOPSMIOM3si chong pi pei fang fa mei you she zhi ka qian zhi huo ka qian ou jian ,pi pei lv wei 100%,dan zhe si chong fang fa de xie bian liang jun heng xing jiu shao cha yi xie 。ji yu si chong fang fa she zhi le ka qian zhi huo ka qian ou jian ,yin ci xie bian liang jun heng xing you suo di sheng 。shi yong PSNNM3pi pei you tong ji xue yi yi ,er she zhi le ka qian zhi hou PSCM3jiu mei you tong ji xue yi yi le 。zhe ke neng shi you yu she zhi le ka qian zhi hou dao zhi le yang ben liang de sun shi ,shi de jian yan xiao lv jiang di 。dan shi ,shi yong le ou jian pi pei hou ,PSIM3de pi pei lv bi PSCM3gao chu le yi xie ,di sheng le bu fen de jian yan xiao lv ,yin ci you jian yan chu le tong ji xue cha yi 。yan jiu jie lun :ka qian ou jian wei 0.60de PSIM2zai tan suo de 16chong ka qian ou jian de PSIM2zhong you zhao zui you de biao xian 。yin ci ,tong guo ben yan jiu de mo ni shi yan ,tui jian zai jin hang PSMshi ,you ji shi yang ben liang bi jiao xiao de shi hou ,shi yong ka qian ou jian wei 0.60de PSIM2neng de dao jiao hao de pi pei 。sui zhao ka qian zhi de jian xiao huo ka qian ou jian chong ge du de zeng jia ,PSCM3huo PSIM3de zu jian xie bian liang jun heng xing hui bian de geng jun heng ,dan shi pi pei lv hui sui zhi xia jiang 。tong guo quan heng liang zhe ,bing ju jie ge chu li xiao ying gu ji de zhi biao ,ben yan jiu tui jian shi yong ka qian ou jian wei 2.6de PSIM3jin hang chu li xiao ying wei mo xu san fen lei de PSM。tong guo shi li yan jiu ,jin yi bu yan zheng le pi pei suan fa you zhao jiao hao de biao xian xing neng 。jing guo 8chong liang fen lei qing xiang xing ping fen pi pei fen xi ,shang hai jiao ou 65sui yi shang du ju yu fei du ju lao nian nv xing ju min de zi ping jian zhuang kuang cha yi jun mo tong ji xue yi yi ,min gan xing fen xi de jie guo ye xian shi cha yi mo tong ji xue yi yi 。shi yong 8chong mo xu san fen lei qing xiang xing ping fen pi pei fen xi shang hai shi mou ou 65sui yi shang lao nian nv xing ju min yi bao lei xing dui liang zhou jiu zhen lv shi fou cun zai cha yi 。jing guo PSNNM3、PSIM3、GOPSNNM3he GOPSMIOM3hou ,jia she jian yan Pzhi xiao yu 0.05,shui ming can bao san chong ji ben yi liao bao xian de ju min de liang zhou jiu zhen lv cha yi you tong ji xue yi yi 。min gan xing fen xi jie guo ye de dao lei shi de jie guo 。

论文参考文献

论文详细介绍

论文作者分别是来自中国人民解放军海军军医大学的郭轶斌,发表于刊物中国人民解放军海军军医大学2019-07-01论文,是一篇关于倾向性评分论文,区间匹配论文,全局最优论文,因果推断论文,中国人民解放军海军军医大学2019-07-01论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自中国人民解放军海军军医大学2019-07-01论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

标签:;  ;  ;  ;  ;  

郭轶斌:分类资料全局最优倾向性评分区间匹配的研究与应用论文
下载Doc文档

猜你喜欢