刘建丽:广西典型有色金属尾矿原位矿化修复中细菌群落响应机制论文

刘建丽:广西典型有色金属尾矿原位矿化修复中细菌群落响应机制论文

本文主要研究内容

作者刘建丽(2019)在《广西典型有色金属尾矿原位矿化修复中细菌群落响应机制》一文中研究指出:广西典型有色金属矿区的复合污染已对周边生态环境构成严重威胁,但如何利用微生物开展原位矿化修复仍是一项全球性的挑战。本研究针对4座现役和9座闭库的复合污染尾矿库以及3到3 1年不同闭库时间的7座自然修复尾矿环境中细菌群落的分布特征,并对某Pb-Zn尾矿库开展微生物原位矿化修复示范试验,主要结论如下:尾矿贫营养环境中,As、Cd、Pb等重金属含量均超过土壤环境质量标准限值几十倍甚至上百倍;有机污染物主要涵盖了多环芳烃、多氯联苯等持久性有机污染物。现役尾矿中特殊菌群为具有金属酶结合位点的Arenimonas,而闭库尾矿库中特殊菌群为降解有机物的Latescibacteria以及硫铁代谢菌属。尾矿经自然修复,闭库15年的尾矿处于酸化早期阶段,闭库时间大于23年时尾矿会逐渐酸化至极端酸性(pH=2),且重金属酸浸出量逐渐上升,在闭库31年时砷元素的酸浸出量高达29.3 mg kg-1。而特殊菌群逐渐由具有硫/硫化物还原及NO3-/NO2-还原的Desulfurivibrio特殊菌群(闭库3年)演化为能够促进植物生长的Rhizobium(闭库23年)和具有硫铁氧化及重金属抗性的Acidiferrobacter和Acidithiobacillus(闭库31 年)。原始尾矿微生物代谢活性较低,功率仅为64-330μW。菌群空间分布特征为水平稳态,且表层稳态主要与Bacillus和Enterococcus相关,而深层主要与Nitrospira和Sulfuricella相关;垂直方向存在明显差异,这也进一步导致特殊菌群和功能代谢途径的差异,表层环境特殊菌群为硫氧化和无机碳固定的Sulfurifustis,而深层环境为Streptococcus菌属。修复过程中Cr、Cu、Fe、Mn和Pb等重金属元素总量呈下降趋势,表层环境中重金属固化率略低于深层环境,且固化率高达94%以上,重金属元素的赋存形态以残渣态为主。外源菌群有利于重金属元素转化为ZnS等金属硫化稳定态矿物的同时,外源修复菌Desulfotomaculum丰度在修复第十二个月高达12%,与土著菌群之间协同演化作用,提高了菌群整体代谢活性和丰度。而硫酸盐代谢相关基因CysH、AprAB、SUOX及TST的检测进一步证明外源菌群参与了重金属的矿化。本研究结果表明,利用硫酸盐还原菌原位矿化技术可以有效固化尾矿重金属,提高金属的稳定性,从而达到良好的防控效果。本研究可以为开发利用功能微生物进行原位矿化修复提供理论依据和技术支撑。

Abstract

an xi dian xing you se jin shu kuang ou de fu ge wu ran yi dui zhou bian sheng tai huan jing gou cheng yan chong wei xie ,dan ru he li yong wei sheng wu kai zhan yuan wei kuang hua xiu fu reng shi yi xiang quan qiu xing de tiao zhan 。ben yan jiu zhen dui 4zuo xian yi he 9zuo bi ku de fu ge wu ran wei kuang ku yi ji 3dao 3 1nian bu tong bi ku shi jian de 7zuo zi ran xiu fu wei kuang huan jing zhong xi jun qun la de fen bu te zheng ,bing dui mou Pb-Znwei kuang ku kai zhan wei sheng wu yuan wei kuang hua xiu fu shi fan shi yan ,zhu yao jie lun ru xia :wei kuang pin ying yang huan jing zhong ,As、Cd、Pbdeng chong jin shu han liang jun chao guo tu rang huan jing zhi liang biao zhun xian zhi ji shi bei shen zhi shang bai bei ;you ji wu ran wu zhu yao han gai le duo huan fang ting 、duo lv lian ben deng chi jiu xing you ji wu ran wu 。xian yi wei kuang zhong te shu jun qun wei ju you jin shu mei jie ge wei dian de Arenimonas,er bi ku wei kuang ku zhong te shu jun qun wei jiang jie you ji wu de Latescibacteriayi ji liu tie dai xie jun shu 。wei kuang jing zi ran xiu fu ,bi ku 15nian de wei kuang chu yu suan hua zao ji jie duan ,bi ku shi jian da yu 23nian shi wei kuang hui zhu jian suan hua zhi ji duan suan xing (pH=2),ju chong jin shu suan jin chu liang zhu jian shang sheng ,zai bi ku 31nian shi shen yuan su de suan jin chu liang gao da 29.3 mg kg-1。er te shu jun qun zhu jian you ju you liu /liu hua wu hai yuan ji NO3-/NO2-hai yuan de Desulfurivibriote shu jun qun (bi ku 3nian )yan hua wei neng gou cu jin zhi wu sheng chang de Rhizobium(bi ku 23nian )he ju you liu tie yang hua ji chong jin shu kang xing de Acidiferrobacterhe Acidithiobacillus(bi ku 31 nian )。yuan shi wei kuang wei sheng wu dai xie huo xing jiao di ,gong lv jin wei 64-330μW。jun qun kong jian fen bu te zheng wei shui ping wen tai ,ju biao ceng wen tai zhu yao yu Bacillushe Enterococcusxiang guan ,er shen ceng zhu yao yu Nitrospirahe Sulfuricellaxiang guan ;chui zhi fang xiang cun zai ming xian cha yi ,zhe ye jin yi bu dao zhi te shu jun qun he gong neng dai xie tu jing de cha yi ,biao ceng huan jing te shu jun qun wei liu yang hua he mo ji tan gu ding de Sulfurifustis,er shen ceng huan jing wei Streptococcusjun shu 。xiu fu guo cheng zhong Cr、Cu、Fe、Mnhe Pbdeng chong jin shu yuan su zong liang cheng xia jiang qu shi ,biao ceng huan jing zhong chong jin shu gu hua lv lve di yu shen ceng huan jing ,ju gu hua lv gao da 94%yi shang ,chong jin shu yuan su de fu cun xing tai yi can zha tai wei zhu 。wai yuan jun qun you li yu chong jin shu yuan su zhuai hua wei ZnSdeng jin shu liu hua wen ding tai kuang wu de tong shi ,wai yuan xiu fu jun Desulfotomaculumfeng du zai xiu fu di shi er ge yue gao da 12%,yu tu zhe jun qun zhi jian xie tong yan hua zuo yong ,di gao le jun qun zheng ti dai xie huo xing he feng du 。er liu suan yan dai xie xiang guan ji yin CysH、AprAB、SUOXji TSTde jian ce jin yi bu zheng ming wai yuan jun qun can yu le chong jin shu de kuang hua 。ben yan jiu jie guo biao ming ,li yong liu suan yan hai yuan jun yuan wei kuang hua ji shu ke yi you xiao gu hua wei kuang chong jin shu ,di gao jin shu de wen ding xing ,cong er da dao liang hao de fang kong xiao guo 。ben yan jiu ke yi wei kai fa li yong gong neng wei sheng wu jin hang yuan wei kuang hua xiu fu di gong li lun yi ju he ji shu zhi cheng 。

论文参考文献

  • [1].皮革废水生物处理过程中细菌多样性及生物强化脱氮研究[D]. 梁贺彬.华南理工大学2019
  • [2].青藏高原多年冻土区微生物多样性及其潜在应用的研究[D]. 章高森.兰州大学2007
  • [3].南极苔原土壤细菌群落和酶活性分布特征及其影响因素[D]. 马大卫.中国科学技术大学2013
  • [4].城市污水处理厂中氨氧化菌及细菌群落结构与功能研究[D]. 王晓慧.清华大学2010
  • [5].基于组学的蚯蚓(Amynthas heterochaetus)自身免疫系统及肠道微生物群落协同防御机理研究[D]. 张一.中国农业大学2016
  • [6].长期不同施肥下旱地红壤细菌群落结构特征及驱动因子的探究[D]. 荀卫兵.南京农业大学2015
  • [7].渤海表层沉积物中细菌群落对石油烃污染的响应及其降解潜力研究[D]. 杨凤龙.中国农业大学2015
  • [8].土壤中粘细菌群落的调查及领地性行为的分子机制的研究[D]. 周秀文.山东大学2013
  • [9].盐环境细菌群落结构分析和多相分类学研究[D]. 吴月红.浙江大学2009
  • [10].海洋低温石油降解菌筛选与细菌群落对石油污染响应研究[D]. 郭平.大连海事大学2017
  • 读者推荐
  • [1].外源重金属铅和镉对土壤生物活性及微生物群落多样性的影响研究[D]. 安凤秋.西北农林科技大学2018
  • [2].中国高速铁路建设对城市可达性及相互作用的影响研究[D]. 王履华.南京大学2019
  • [3].内生细菌强化植物修复钒矿污染土壤效应及机理研究[D]. 王亮.北京科技大学2019
  • [4].基于大数据的中医药科学计量学研究[D]. 石康乐.北京中医药大学2019
  • [5].基于网络药理学研究精制清开灵注射液抗缺血性脑卒中的作用机制[D]. 马重阳.北京中医药大学2019
  • [6].铀尾矿区土壤污染风险评价与管理研究[D]. 张宇.中国科学技术大学2019
  • [7].基于宏基因组技术研究Pb胁迫下黄酮醇对植物的抗逆机制[D]. 张旭.山东大学2019
  • [8].贵州毕节市农田土壤重金属污染钝化修复研究[D]. 原志敏.北京科技大学2018
  • [9].陕南金属尾矿库区土壤重金属迁移规律及其环境效应研究[D]. 汤波.西安科技大学2017
  • [10].陕西典型铁尾矿库区土壤重金属迁移及其修复研究[D]. 宋凤敏.西北农林科技大学2016
  • 论文详细介绍

    论文作者分别是来自北京科技大学的刘建丽,发表于刊物北京科技大学2019-06-27论文,是一篇关于有色金属尾矿论文,细菌群落演替论文,原位矿化修复论文,时空分布论文,北京科技大学2019-06-27论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自北京科技大学2019-06-27论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    刘建丽:广西典型有色金属尾矿原位矿化修复中细菌群落响应机制论文
    下载Doc文档

    猜你喜欢