王宏彬:宽带隙MgxZn1-xO薄膜的制备及其性能研究论文

王宏彬:宽带隙MgxZn1-xO薄膜的制备及其性能研究论文

本文主要研究内容

作者王宏彬(2019)在《宽带隙MgxZn1-xO薄膜的制备及其性能研究》一文中研究指出:随着紫外光电技术在民用和军事等领域的发展,MgZnO作为新型三元固溶体宽带隙半导体材料备受关注。ZnO的带隙为3.3 eV,MgO的带隙为7.8 eV,理论上,MgZnO薄膜的带隙在3.37 eV至7.8 eV之间连续调节,能够实现深紫外到近紫外连续调节薄膜的光谱,是太阳盲区紫外光电探测器的最佳候选材料,已经成为当前研究的热点。但由于ZnO和MgO两者结构上的差异,无法连续固溶,目前报道纤锌矿结构MgxZn1-xO的最大带隙仅能达到4.28 eV,对应的Mg含量为x=0.36,不能满足日盲紫外探测的应用需求。为了提高Mg在ZnO中的固溶量,本文通过一种非稳态合成技术-激光烧结法制备MgZnO薄膜,选用石英和硅为衬底,系列地研究合成工艺对薄膜性能的影响,具体研究内容如下:1.研究了激光功率对Mg0.2Zn0.8O薄膜结构和光电特性的影响。研究发现,随着功率的升高,石英衬底上生长的MgZnO薄膜c轴取向生长强度逐渐提高,薄膜质量逐渐完善。当激光功率为53 W时,薄膜生长最优,且探测器性能最佳。但当激光功率到达60 W时,薄膜表面被破坏,MgZnO薄膜消失。MgZnO基紫外探测器的响应度逐渐增加,对应的峰值响应度从0.013 A/W增大至2.43 A/W,紫外可见抑制比从83.64增大到350.65。在30 V偏压下,硅衬底上MgZnO基探测器的暗电流仅为9 nA,紫外响应度为2.1 A/W,Ilight/Idark达到0.6×103,探测器具有优异的响应特性。2.研究了激光照射时间对Mg0.2Zn0.8O薄膜结构和光电特性的影响。研究发现,最佳的激光照射时间为30 s。当激光照射时间从10 s延长至30 s,MgZnO薄膜从多晶取向向单晶取向转变,且c轴取向生长强度逐渐增强,薄膜的结晶质量逐渐完善,但当激光照射时间为40 s时,薄膜表面被破坏。在30 V偏压下,MgZnO基探测器的光响应度从0.053 A/W增加到0.23 A/W。当激光照射时间为30 s时,器件的暗电流为78 nA,光电流为48μA,紫外探测器的信噪比达到三个数量级,硅衬底上制备的MgZnO基探测器的光响应度为1.78 A/W,具有优异的响应特性。3.研究了Mg2+掺杂浓度对MgZnO薄膜和光电性能的影响。研究表明,x=0.10.45时,MgxZn1-xO薄膜均为六方纤锌矿结构,晶粒呈六方柱生长,且(002)衍射峰向高角度方向偏移。石英衬底上薄膜的紫外吸收截止边从340 nm(x=0.1)偏移到295 nm(x=0.45),出现明显的蓝移现象。当x=0.45时,硅衬底上制备的MgxZn1-xO基紫外光电探测器在290 nm处的响应度达到1.9 A/W,获得了具有响应特性的六方结构MgZnO薄膜探测器。

Abstract

sui zhao zi wai guang dian ji shu zai min yong he jun shi deng ling yu de fa zhan ,MgZnOzuo wei xin xing san yuan gu rong ti kuan dai xi ban dao ti cai liao bei shou guan zhu 。ZnOde dai xi wei 3.3 eV,MgOde dai xi wei 7.8 eV,li lun shang ,MgZnObao mo de dai xi zai 3.37 eVzhi 7.8 eVzhi jian lian xu diao jie ,neng gou shi xian shen zi wai dao jin zi wai lian xu diao jie bao mo de guang pu ,shi tai yang mang ou zi wai guang dian tan ce qi de zui jia hou shua cai liao ,yi jing cheng wei dang qian yan jiu de re dian 。dan you yu ZnOhe MgOliang zhe jie gou shang de cha yi ,mo fa lian xu gu rong ,mu qian bao dao qian xin kuang jie gou MgxZn1-xOde zui da dai xi jin neng da dao 4.28 eV,dui ying de Mghan liang wei x=0.36,bu neng man zu ri mang zi wai tan ce de ying yong xu qiu 。wei le di gao Mgzai ZnOzhong de gu rong liang ,ben wen tong guo yi chong fei wen tai ge cheng ji shu -ji guang shao jie fa zhi bei MgZnObao mo ,shua yong dan ying he gui wei chen de ,ji lie de yan jiu ge cheng gong yi dui bao mo xing neng de ying xiang ,ju ti yan jiu nei rong ru xia :1.yan jiu le ji guang gong lv dui Mg0.2Zn0.8Obao mo jie gou he guang dian te xing de ying xiang 。yan jiu fa xian ,sui zhao gong lv de sheng gao ,dan ying chen de shang sheng chang de MgZnObao mo czhou qu xiang sheng chang jiang du zhu jian di gao ,bao mo zhi liang zhu jian wan shan 。dang ji guang gong lv wei 53 Wshi ,bao mo sheng chang zui you ,ju tan ce qi xing neng zui jia 。dan dang ji guang gong lv dao da 60 Wshi ,bao mo biao mian bei po huai ,MgZnObao mo xiao shi 。MgZnOji zi wai tan ce qi de xiang ying du zhu jian zeng jia ,dui ying de feng zhi xiang ying du cong 0.013 A/Wzeng da zhi 2.43 A/W,zi wai ke jian yi zhi bi cong 83.64zeng da dao 350.65。zai 30 Vpian ya xia ,gui chen de shang MgZnOji tan ce qi de an dian liu jin wei 9 nA,zi wai xiang ying du wei 2.1 A/W,Ilight/Idarkda dao 0.6×103,tan ce qi ju you you yi de xiang ying te xing 。2.yan jiu le ji guang zhao she shi jian dui Mg0.2Zn0.8Obao mo jie gou he guang dian te xing de ying xiang 。yan jiu fa xian ,zui jia de ji guang zhao she shi jian wei 30 s。dang ji guang zhao she shi jian cong 10 syan chang zhi 30 s,MgZnObao mo cong duo jing qu xiang xiang chan jing qu xiang zhuai bian ,ju czhou qu xiang sheng chang jiang du zhu jian zeng jiang ,bao mo de jie jing zhi liang zhu jian wan shan ,dan dang ji guang zhao she shi jian wei 40 sshi ,bao mo biao mian bei po huai 。zai 30 Vpian ya xia ,MgZnOji tan ce qi de guang xiang ying du cong 0.053 A/Wzeng jia dao 0.23 A/W。dang ji guang zhao she shi jian wei 30 sshi ,qi jian de an dian liu wei 78 nA,guang dian liu wei 48μA,zi wai tan ce qi de xin zao bi da dao san ge shu liang ji ,gui chen de shang zhi bei de MgZnOji tan ce qi de guang xiang ying du wei 1.78 A/W,ju you you yi de xiang ying te xing 。3.yan jiu le Mg2+can za nong du dui MgZnObao mo he guang dian xing neng de ying xiang 。yan jiu biao ming ,x=0.10.45shi ,MgxZn1-xObao mo jun wei liu fang qian xin kuang jie gou ,jing li cheng liu fang zhu sheng chang ,ju (002)yan she feng xiang gao jiao du fang xiang pian yi 。dan ying chen de shang bao mo de zi wai xi shou jie zhi bian cong 340 nm(x=0.1)pian yi dao 295 nm(x=0.45),chu xian ming xian de lan yi xian xiang 。dang x=0.45shi ,gui chen de shang zhi bei de MgxZn1-xOji zi wai guang dian tan ce qi zai 290 nmchu de xiang ying du da dao 1.9 A/W,huo de le ju you xiang ying te xing de liu fang jie gou MgZnObao mo tan ce qi 。

论文参考文献

  • [1].基于石英衬底的InxAl1-xN薄膜的制备及光电性能研究[D]. 高海波.西北大学2019
  • [2].碳/硅掺杂六方氮化硼(h-BN)薄膜的制备与性能研究[D]. 姜思宇.武汉科技大学2019
  • [3].MgxZn1-xO薄膜带隙调节及紫外探测器光电性能研究[D]. 张峰.哈尔滨工业大学2018
  • [4].Nd2O3掺杂HfO2高k栅介质薄膜的ALD制备及性能研究[D]. 张文强.北京有色金属研究总院2017
  • [5].基于铌酸锂单晶薄膜忆阻交叉阵列研究[D]. 彭赟.电子科技大学2019
  • [6].电化学沉积非晶碳基薄膜及其疏水腐蚀性能[D]. 朱小波.江西理工大学2019
  • [7].一种新型的金属氧化物—黏土薄膜模拟钚在天然地质黏土中的迁移固化机理[D]. 宋平.西南科技大学2019
  • [8].B及W掺杂DLC薄膜在人工海水中磨蚀性能的研究[D]. 刘健.青岛理工大学2019
  • [9].金属掺杂氮化钨薄膜的制备及其特性研究[D]. 苏航.延边大学2019
  • [10].金属掺杂氮化铌薄膜的制备及其特性研究[D]. 杜安天.延边大学2019
  • 论文详细介绍

    论文作者分别是来自长春理工大学的王宏彬,发表于刊物长春理工大学2019-10-23论文,是一篇关于激光烧结法论文,激光功率论文,激光照射时间论文,紫外光电探测器论文,长春理工大学2019-10-23论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自长春理工大学2019-10-23论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  

    王宏彬:宽带隙MgxZn1-xO薄膜的制备及其性能研究论文
    下载Doc文档

    猜你喜欢