不均衡训练集论文-简川霞,高健

不均衡训练集论文-简川霞,高健

导读:本文包含了不均衡训练集论文开题报告文献综述及选题提纲参考文献,主要关键词:不均衡数据,印刷套准,集成采样,支持向量机

不均衡训练集论文文献综述

简川霞,高健[1](2018)在《面向不均衡训练集的印刷图像套准状态检测方法》一文中研究指出目的针对不均衡的印刷图像套准状态检测中存在的印刷套不准图像识别准确率低的问题,研究不均衡印刷图像训练集的预处理方法。方法提出不均衡印刷图像训练集数据的集成采样预处理方法。支持向量机先将不均衡的训练集数据分为支持向量和非支持向量,然后过采集少类样本(即印刷套不准图像)中的支持向量,欠采集多类样本(即印刷套准图像)中的非支持向量,实现训练集数据的均衡化。最后采用预处理后的均衡训练集对支持向量机模型进行训练,并优化模型参数。结果采用文中提出的集成采样方法对不均衡训练集预处理后获得支持向量机模型,通过对印刷图像套准状态进行识别,获得的少类样本识别率a+为0.9375,识别准确率几何平均数Gmean为0.9437,F测度为0.9574。结论文中提出方法获得的印刷套不准图像识别准确率a+,Gmean和F测度均优于实验中的其他方法。(本文来源于《包装工程》期刊2018年11期)

徐山,杜卫锋[2](2013)在《不均衡训练集下短信过滤系统kNN方法的研究》一文中研究指出不良短信的泛滥,严重影响了社会风气,干扰了人们正常的生活秩序,研发不良短信过滤技术具有相当的实用价值。应用中科院计算所研制开发的ICTCLAS分词系统,结合TFIDF词权度量指标提取关键词,实现短信文本到特征向量的转换,然后采用kNN方法实现短信的类别判断,从而实现不良短信的过滤。另外,针对训练集分布不均衡的情况,应用基于密度的改进方法,较为有效地处理了原来分类结果倾向于大类别样本的情况。实验表明,改进后的方法的准确率约79.18%,比原方法提升了约1.23%。该方法能够比较有效地过滤不良短信,具有一定的实用价值。(本文来源于《计算机应用与软件》期刊2013年11期)

程有龙,庄连生,李斌,庄镇泉[3](2010)在《面向不均衡小样本训练集的改进Boosting算法》一文中研究指出传统的Boosting算法训练出的分类器常会出现过拟合和向多数类偏移.为此,提出一种基于自适应样本注入和特征置换的Boosting学习算法,通过在训练过程中加入人工合成样本,逐渐平衡训练集,并通过合成的样本对分类器学习进行扰动,使分类器选择更多有效的特征,提高了分类器的泛化能力.最后,在两类和多类图片分类问题上对该算法的有效性进行了考察,实验结果表明,该算法能够在样本数很少,且正负样本数量极不均衡的情况下,有效提高booting算法的泛化能力.(本文来源于《中国科学技术大学学报》期刊2010年02期)

不均衡训练集论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

不良短信的泛滥,严重影响了社会风气,干扰了人们正常的生活秩序,研发不良短信过滤技术具有相当的实用价值。应用中科院计算所研制开发的ICTCLAS分词系统,结合TFIDF词权度量指标提取关键词,实现短信文本到特征向量的转换,然后采用kNN方法实现短信的类别判断,从而实现不良短信的过滤。另外,针对训练集分布不均衡的情况,应用基于密度的改进方法,较为有效地处理了原来分类结果倾向于大类别样本的情况。实验表明,改进后的方法的准确率约79.18%,比原方法提升了约1.23%。该方法能够比较有效地过滤不良短信,具有一定的实用价值。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

不均衡训练集论文参考文献

[1].简川霞,高健.面向不均衡训练集的印刷图像套准状态检测方法[J].包装工程.2018

[2].徐山,杜卫锋.不均衡训练集下短信过滤系统kNN方法的研究[J].计算机应用与软件.2013

[3].程有龙,庄连生,李斌,庄镇泉.面向不均衡小样本训练集的改进Boosting算法[J].中国科学技术大学学报.2010

标签:;  ;  ;  ;  

不均衡训练集论文-简川霞,高健
下载Doc文档

猜你喜欢