导读:本文包含了本征音论文开题报告文献综述及选题提纲参考文献,主要关键词:说话人自适应,本征音子,组稀疏约束,稀疏组LASSO约束
本征音论文文献综述
屈丹,张文林[1](2015)在《基于稀疏组LASSO约束的本征音子说话人自适应》一文中研究指出本征音子说话人自适应方法在自适应数据量不足时会出现严重的过拟合现象,提出了一种基于稀疏组LASSO约束的本征音子说话人自适应算法。首先给出隐马尔可夫—高斯混合模型下本征音子说话人自适应的基本原理;然后将稀疏组LASSO正则化引入到本征音子说话人自适应,通过调整权重因子控制模型的复杂度,并通过一种加速近点梯度的数学优化算法来实现;最后将稀疏组LASSO约束的自适应算法与当前多种正则化约束的自适应方法进行比较。汉语连续语音识别的说话人自适应实验表明,引入稀疏组LASSO约束后,本征音子说话人自适应方法的性能得到了明显提高,且稀疏组LASSO约束方法优于l1、l2和弹性网正则化方法。(本文来源于《通信学报》期刊2015年09期)
屈丹,杨绪魁,张文林[2](2015)在《特征空间本征音说话人自适应》一文中研究指出提出了特征空间本征音说话人自适应算法,该方法首先借鉴RATZ算法的思想,采用高斯混合模型对特征空间中的说话人信息进行建模;其次利用子空间方法实现对特征补偿项的估计,减少估计参数的数量,在对特征空间精确建模的同时,降低了算法对自适应数据量的需求.基于微软语料库的中文连续语音识别实验表明,该算法在自适应数据量极少时仍能取得较好的性能,配合说话人自适应训练能够进一步降低词错误率,其实时性优于本征音说话人自适应算法.(本文来源于《自动化学报》期刊2015年07期)
屈丹,张文林[3](2015)在《基于本征音子说话人子空间的说话人自适应算法》一文中研究指出本征音子说话人自适应算法在自适应数据量充足时可以取得很好的自适应效果,但在自适应数据量不足时会出现严重的过拟合现象。为此该文提出一种基于本征音子说话人子空间的说话人自适应算法来克服这一问题。首先给出基于隐马尔可夫模型-高斯混合模型(HMM-GMM)的语音识别系统中本征音子说话人自适应的基本原理。其次通过引入说话人子空间对不同说话人的本征音子矩阵间的相关性信息进行建模;然后通过估计说话人相关坐标矢量得到一种新的本征音子说话人子空间自适应算法。最后将本征音子说话人子空间自适应算法与传统说话人子空间自适应算法进行了对比。基于微软语料库的汉语连续语音识别实验表明,与本征音子说话人自适应算法相比,该算法在自适应数据量极少时能大幅提升性能,较好地克服过拟合现象。与本征音自适应算法相比,该算法以较小的性能牺牲代价获得了更低的空间复杂度而更具实用性。(本文来源于《电子与信息学报》期刊2015年06期)
张文林,张连海,陈琦,李弼程[4](2014)在《语音识别中基于低秩约束的本征音子说话人自适应方法》一文中研究指出该文提出一种基于低秩约束的本征音子(Eigenphone)说话人自适应方法。原始的本征音子说话人自适应方法在自适应语料充分时具有很好的效果,然而当自适应语料不足时,出现严重的过拟合现象,导致自适应后的系统可能比自适应前的系统还要差。首先,对协方差矩阵为对角阵的隐马尔可夫-高斯混合模型语音识别系统,推导出一种简化的本征音子矩阵估计算法;然后,对本征音子矩阵引入低秩约束,采用矩阵的核范数作为矩阵秩的凸近似,通过调节核范数的权重因子以有效控制自适应模型的复杂度;最后,给出一种加速近点梯度算法以求解新算法中引入的带有核范数正则项的数学优化问题。汉语连续语音识别的说话人自适应实验表明,引入低秩约束后,本征音子说话人自适应方法的自适应效果得到了明显提高,在5~50 s的自适应数据条件下,均取得了比最大似然线性回归后接最大后验(MLLR+MAP)自适应更佳的识别效果。(本文来源于《电子与信息学报》期刊2014年04期)
张文林,张连海,牛铜,屈丹,李弼程[5](2012)在《基于正则化的本征音说话人自适应方法》一文中研究指出将正则化方法应用于本征音说话人自适应算法中,有效地解决了说话人子空间基的先验选择问题.通过对似然函数引入适当的正则项,在优化过程中从候选本征音基矢量中自动选择最佳的本征音进行线性组合.本文讨论了叁种正则化因子,并给出了其数学优化算法.l1正则化可以得到说话人因子的稀疏解,其非零项即对应最佳本征音基矢量;l2正则化可以提高解的稳健性,在某种程度上减少了子空间维数的先验选择对识别率的影响;而弹性网正则化则通过线性组合在二者之间取得折衷.有监督说话人自适应实验表明,新方法与本征音方法的最好结果相比,在少量的自适应数据条件下(10s以下),识别率相对提高了近1%~2%.叁种方法中,l1正则化略优于l2正则化,而在引入弹性网正则化后,系统性能有了进一步提高.(本文来源于《自动化学报》期刊2012年12期)
潘镭,郭武,李轶杰,戴礼荣[6](2009)在《基于本征音因子分析的短时说话人识别》一文中研究指出提出了一种基于本征音因子分析的文本无关的说话人识别方法。它解决了训练语音与测试语音均很短的情况下,传统的基于最大后验概率准则的混合高斯模型无法建立稳定的说话人模型问题。首先利用期望最大化算法在开发集上训练出说话人的本征音载荷矩阵,在说话人模型建模时通过将短时语音数据向本征音空间的降维映射来得到模型参数。实验结果表明,在NIST SRE 2006数据库中的10 s训练语音-10 s测试语音任务中,在传统的混合高斯模型的基线系统上,通过采用本征音因子分析的方法可以使系统等错误率降低18%。(本文来源于《数据采集与处理》期刊2009年04期)
罗骏,欧智坚,王作英[7](2004)在《基于相关子空间本征音分析的MAP快速自适应》一文中研究指出本征音自适应是一种快速自适应算法 ,它根据对说话人矢量全空间的本征分析指导参数更新。该文提出一种基于子空间分析的本征音自适应算法 ,并且不同于一般本征音自适应采用最大似然准则的做法 ,该算法用最大后验准则以更好地估计参数。实验证明 ,在仅有 1句自适应数据的情况下它即能取得 6 .4 5 %的相对误识率下降 ,自适应速度远快于传统的最大后验方法 ,也不存在最大似然线性回归方法在极少数据量情况下反而造成系统识别性能下降的现象。结果表明该方法并不明显依赖相关子空间的划分数量 ,是一种稳健的自适应方法(本文来源于《清华大学学报(自然科学版)》期刊2004年06期)
本征音论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
提出了特征空间本征音说话人自适应算法,该方法首先借鉴RATZ算法的思想,采用高斯混合模型对特征空间中的说话人信息进行建模;其次利用子空间方法实现对特征补偿项的估计,减少估计参数的数量,在对特征空间精确建模的同时,降低了算法对自适应数据量的需求.基于微软语料库的中文连续语音识别实验表明,该算法在自适应数据量极少时仍能取得较好的性能,配合说话人自适应训练能够进一步降低词错误率,其实时性优于本征音说话人自适应算法.
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
本征音论文参考文献
[1].屈丹,张文林.基于稀疏组LASSO约束的本征音子说话人自适应[J].通信学报.2015
[2].屈丹,杨绪魁,张文林.特征空间本征音说话人自适应[J].自动化学报.2015
[3].屈丹,张文林.基于本征音子说话人子空间的说话人自适应算法[J].电子与信息学报.2015
[4].张文林,张连海,陈琦,李弼程.语音识别中基于低秩约束的本征音子说话人自适应方法[J].电子与信息学报.2014
[5].张文林,张连海,牛铜,屈丹,李弼程.基于正则化的本征音说话人自适应方法[J].自动化学报.2012
[6].潘镭,郭武,李轶杰,戴礼荣.基于本征音因子分析的短时说话人识别[J].数据采集与处理.2009
[7].罗骏,欧智坚,王作英.基于相关子空间本征音分析的MAP快速自适应[J].清华大学学报(自然科学版).2004
标签:说话人自适应; 本征音子; 组稀疏约束; 稀疏组LASSO约束;